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PART |. SEPARATED PAIR APPROXIMATION FOR

LITHIUM HYDRIDE AND BORON HYDRIDE



INTRODUCTION

Well before the formulation of quantum mechanics and its application
to problems of atomic and molecular structure, the importance of the elec-
tron pair had already been recognized. The ideas which were developed
after the discovery of the electron culminated in the work of G, N, Lewis
who pointed out not only the central role of the shared electron pair i&ﬂ
bonding but also that of unshared pairs (1). Langmuir and others continued
the development of these ideas and showed that they could be used to
explain a large variety of chemical facts (2,3). With the development of
quantum mechanics it became possible to go considerably further and to
elucidate the detailed structure of electron pairs. The combination of
these ideas with the insights provided by quantum mechanics resulted in
rapid strides in gaining a qualitative understanding of atomic and molecu-
lar structure,

In contrast, the attempts to obtain quantitative results along with
qualitative explanations encountered insuperable mathematical and computa-
tional difficulties which did not become amenable to solution until the
development of the high-speed digital computer. The recent advances in
computer technology have led to a corresponding increase in the number of
quantitative molecular calculations.

The main thrust of quantitative ab-initio investigations has been in
the development and refinement of the self-consistent independent particle
model as formulated by Hartree and Fock (4-6). By use of Roothaan's
expansion procedure (7), nearly exact Hartree-Fock wave functions are

becoming available, especially for atoms and diatomic molecules (8f|l).



These investigations make it clear that, while the Hartree-Fock wave
functions are quite capable of ylelding satisfactory predictions of one-
electron properties, their failure to account for the individual electron
correlations makes their use for chemical purposes dependent on developing
schemes which yield reliable predictions of the correlation effects, For
this reason ab-initio determinations of wave functions beyond the Hartree-
Fock level have become essential.

The most common avenue of attack for constructing correlated wave
functions has been the configuration interaction (Cl) technique, where the
wave function is built up from a linear combination of configurations

(Slater determinants, antisymmetrized products), Yi, namely

where the ci are determined variationaly. This formulation is a restate-
ment of the general existence theorem for infinite expansions of antisym~
metric functions in Hilbert Space. In O(der to fill such a framework with
physical content, it is necessary to find a-priori ways to anticipate
which of the many configurations that can be constructed will yield sub-
stantial contributions to the total energy. The first of these antisym-
metrized products, Yo’ is usually taken to be the Hartree-Fock wave
function. It is therefore essential to look for formulations of the higher
terms which will yield physically significant information.

As a possible step in this direction it seems appealing to incorporate
into the rigorous framework qualitative and intuitive chemical concepts,
which would thus be preserved throughout the quantum mechanical formula-

tion, and, at the same time, be critically tested. The concept of



electron pairs is of considerable importance in chemistry and also simple
enough to maintain in the quantum mechanical treatment.
The formulation of pair theory goes back to the work of Hurley (12),

Lennard-Jones and Pople (13) who proposed the use of functions of the form

= (1 %

Wu EiakL wpk(n pr(z)
In addition, they introduced the ''strong orthogonality'' condition

‘[dv] ‘?H(l,z) w;(1,3) =0 wev
so that the resulting Formulas would be tractable., With this additional
constraint, the functions, YM’ are called separated pair functions. These
authors further simplified the separated pair functions by expanding them
in terms of their natural orbitals (14), viz.,

‘1’“(1,2) = >': cui dm(l) d}‘ii(z) .

Since its original introduction several investigations have been
carried out using the separated pair approximation. Parks and Parr (15)
suggested several alternative schemes for minimizing the energy to obtain
the optimal wave function. The separated pair approximation was applied
to LiH by Csizmadia, Sutcliffe and Barnett (16), and by Ebbing and
Henderson (17) who also transformed the expansions to the natural form and
compared their wave function to the Cl wave function calculated earlier by
Ebbing (18). McWeeny and Ohno (19) applied the approximation to the water
molecule, and McWeeny and Sutcliffe to Be (20). In addition, Kutzelnigg
(21) has compared the separated pair approximation to a different pair

approximation suggested by Coleman (22), namely an antisymmetrized product



of identical pair functions. Kutzelnigg concluded that the first and

second order density matrices of the separated pair wave function of Be
conformed to the predicted properties of the density matrices, while the
antisymmetrized product of identical pair functions did not. In all these
cases, various simplifications and truncated basis expansions limited the
effectiveness of the separated pair approximation rather drastically and
made it impossible to determine its intrinsic efficacy.

The first rigorous application, without simplifying assumptions and
using extended basis sets, was. done by Miller (23) and Ruedenberg (24)
(hereafter referred to as MR) on Be and the isoelectronic first row ions.
They uniformly recovered about 90% of the correlation energy with their
best wave functions. The considerable success enjoyed by the separated
pair approximation in that investigation suggests its application to more
complicated systems. It is of particular interest whether the separated
pair approximation will be equally successful in atomic and diatomic
systems with more than four electrons.

To this end the separated pair approximation has been applied to LiH,
BH, NH and their respective separated atoms, The determination of the
separated pair wave functions for the first two hydrides, LiH and BH, and
their separated atoms is the subject of the pre;ent investigation., The
separated pair wave functions for N and NH have been obtained by D, Silver
(25).

Lithium hydride is well known. Its properties have been accurately
determined and provide an excellent basis of comparison for theoretically
calculated properties. The spectra of LiH have been thoroughly investi-

gated by Crawford and Jorgensen (26,27).



Boron hydride, on the other hand, is considerably less well known,
and many of its properties have not been obtained experimentally, Its
spectra were first investigated by Lochte-Holtgreven and Vleagel (28) who
produced it from reacting boron trichloride with hydrogen. More recently,
Bauer, Herzberg and Johns (29) have investigated the spectra of BH. They

proposed the reactions

H3860 + hv - BH + HZ* + C0

H3BCO + hv - BH + Hy + CO*
for its formation from borine carbonyl, where % indicates vibrational
excitation. Boron hydride has also been detected in sun spot spectra by
Babcock (30) but not in solar disk spectra.

The present investigation and that conducted on NH indicate that the
separated pair approximation has only limited applicability in systems
with more than four electrons. In boron, the lack of inter-pair correla-
tions and the strong orthogonality constraint proved to be especially
severe. On the other hand, the form of the wave function is particularly
amenable to analysis, and it is readily possible to isolate particular
aspects of electronic structure out of the total wave function. [t may be

that the relaxation of the strong orthogonality constraint could, in

certain cases, enlarge the applicability of the general pair approximation.
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VARIATIONAL APPROACH TO THE SEPARATED PAIR APPROXIMATION

Wave Function, Density Matrices, Natural Orbitals
in the pair approximation the wave function for an N = 2n electron
system may be written as an antisymmetrized product of pair functions

called geminals (31)
3(1,2,...,N) =Jbrn1 ¥ (2u-1, 20) . (1)
p=1 M

This formulation can also be adopted for a (2n=-1)=N electron system if
WN=¢N Is Interpreted as a spin orbital. The spin geminals are assumed to
be antisymmetric in their two coordinates and.fbis a partial antisymme=
trizer which acts on the electron coordinates between different space-spin
products.

Since the geminals are two electron functions, they may be factored

into the product of a space part, A, and a spin part, 6,
‘l’u(l,Z) = Au(l,z) Gu(l,z) . (2)

The space geminals, Au, can be expanded in terms of their natural orbitals

%

(3)
AN(I)'= gy (1) if N =(2n-1)

where the q¢i are mutually orthogonal and the ﬂxi are the occupation coef-
ficients; which are real (32,33) if %x is a singlet. As a consequence of
Eq. 2 the spin factors can be integrated out in the formulas for the energy

and density matrices.



It is possible to derive expressions for the energy and the first and
second order density matrices without any further assumptions. However, the
equations become very complex (20,34=36) if one assumes only the weak

orthogonal ity condition

[avy fav, &, (1,2) 0501,2) = v (1) =8 . (4)

Y
A significant simplification is achieved by introducing the strong ortho-

gonality condition of Hurley, Lennard-Jones and Pople (13), to wit
%
J‘dvz A“-(I’Z) Av(l',Z) = P’J_\,(':") =0 podv . (5)

Such wave functions are called Antisymmetrizaed Products of Separated
Geminals (APSG), and form the basis of the present investigation. Arai (37)
and more generally Ldwdin (38) have shown that the strong orthogonality
conditions are equivalent to the assumption that the natural orbitals of

“different geminals are mutually orthogonal, i.e.,
j’dv.sl by = S b1y (6)

In order to formulate expressions for the density matrices, use is
made of McWeeny's (39,40) relations between the first and second order
density matrices of group wave functions and the first and second order

density matrices associated with the individual groups. Let
*
p (1510) = w, fov, A (1,2) A (14,2)

=%

LA MUE AR (7e)

x(1,25 19,21) = 20,-1) A,(1,2) AL(11,21) (7)
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be the first and second order density matrices for the w'th geminal or

orbital, where

2 if 1 is a geminal
I if L is an orbital,

Then the first order density matrix of the total wave function, &, of Eq. |
is

p(1,1) = Epu("'") (8)

and the second order density matrix of & becomes
1((],2; l',Z') = Z=x (1,2 ||,2|)
TR
(9)
1
+ I 1,1 2,2') - 1,2! 2,191,
oV {pu( ) ) Pv( P ) Epu( 3 ) p\,( 3 )}
(u#v)
Eq. 8 shows that the natural orbitals of the geminals are the natural
orbitals of the total wave function,
Eq. 6 suggests (38) that the natural orbitals are conveniently con-

structed by an isometric transformation, T,

=31 (10)

from a suitable orthonormal basis set,

- or _or
Xor‘=(X|:X2.’---) ) (1)

and this procedure is adopted here.



Total Energy and Geminal Energy
The non=relativistic Hamiltonian for an N-electron system in atomic
units (1.0 hartree = 27.2097 e.v.; 1.0 bohr = 0.529172 A), assuming the

Born=Oppenheimer approximation (41), is

_ . -1 -1
K ?h(u) + igj oy + T ZozzsRaa (12)
with
R - -1
h(i) = - 5 V3 = 2y (13)

where the labels i, j, . . . indicate electron coordinates, the labels @,
B, . . « indicate nuclear coordinates, and Ax is the charge on nucleus Q.
The electronic energy for singlet and doublet states in the APSG

approximation can be obtained from Eqs. 8 and 9, and becomes

= b
E Ee(u) +u§\’ 1 Ga,v) (14)
with
EQu) = i?j Ci Gy E(uispj) | (15)
E(uisug) = (8 ;b8 ;) + RDICHTRERTR (16)
and
2 2 . s
y) =BG G i) (17)
Hiovi) =u, (208 8 ;14,67 - [ 8,;4,;14,:¢ ;13 (18)

where the definitions

(8,1018,) = Jav, ¢;(1) h(1) 6,(1) (19)
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[6,9;18,8, = Jov, [av, £{01) $,(1) 6,2 6,(2)/r (20)

are used. Eq. 14 shows that the total electronic energy can be considered

as the sum of intrageminal contributions, E{u), and intergeminal contri-

butions, |(L,v).
The geminal energy
e =E@ + T 1{wwv) (21)
K v (#u)
represents the energy of one geminal In the context of the whole system.

The total energy may also be written as

E=2¢e¢e - % | .
m 1 Y (!J»:\’) (22)

Variational Equations
Two interdependent sets of variational equations may be obtained for
the APSG wave function. The first of these requires that the energy be
stationary for variations of the occupation coefficients and results in a

set of coupled eigenvalue equations (42,43)

Jz. H-il'j CNJ = €u c“.i i = ];2,' e ey W= IJZJO o« oy N (23)
where .-
Hiy = EGin)) + 6, 1) (24)
and
2
(i) = I ZC . Muivi) (25)
vea) § T

The weighted sum of the |(ui), namely
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2
£CT 1) = T 1, 26
Gy 1) o) (V) (26)

represents the total interaction energy of the Q'th geminal with all the
other geminals,

Making the energy stationary for variations of the natural orbitals
yields the second set of variational equations. These are a set of coupled
integro-differential equations which have been derived by Kutzelnigg (42).
I f the natural orbitals are obtained from an orthonormal basis by an iso-
metric transformation, T, as in Eq, Io; variations of the natural orbitals

are replaced by variations of the elements of I, and this yields the

expression
i -
Z G T = 2 Tipup Mgy (27)
k vj
where
A, . =XA . 28
V]l Hi,v) (28)
are Lagrangian multipliers introduced to guarantee the orthogonality
constraints
e
Jave, é,= SULITR
and furthermore
i 2 2
Gkt = Pegr Gpi * s G * Bk Cui (29)
with
h,o = (k|R[K") (30)

kk!



L}

T

#:k. = (u,fl) £. [ktfk'] {§ Teaws Tet o CHJ} e

1

Tk

T {20kk!'|eL'] - [kblk'4'7)
w1
(32)

+ I T, o0 Top 0 A2

v (#) Lyvj Alvj C\).j .

If both sides of Eq. 27 are multiplied by Tk wi and summed over k and then
3

over i, one obtains the relation

: =1 . : =
c ) Zoc e (88 8 8 T=n T (33)

iy = K. TP TPV
as the coupling equation between the diagonal elements of A and the geminal

energies.

Determination of Wave Function

Variation of parameters

Three sets of interdependent parameters must be determined to find the
optimal form of the APSG wave function, The occupation cogff[yients are
found by solving Eq. 23. The orbital exponents associated with the basis
functions, Xor’ are determined by varying them until the energy is minimal.
The elements of the rotation matrix T could be found from Eq. 27; however,
because of its complex nature this method is replaced by the alternative
of minimizing the total energy with respect to the elements of T.

This optimization is accomplished by parametrizing T in terms of

M(M=1)/2 parameters Y, ie€ay

lM = .=rM ('YI: 'Yz: LA A A | 'YM(M")/Z) (3"")
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where M is the order of T. These parameters are varied until the energy is
minimized. They represent angles for two by two rotations and are limited
to the domain (-m,n). The orthogonal matrix T of degree n is obtained (L4k4)
as the n'th step in a recursive sequence of orthogonal matrices I(n), ie€.,
I= l(n). The n'th matrix ;(n) is obtained from the (n=1)'st matrix g(nnl)

by the following set of recursive steps

(n) _  (n) .
Tjk =ty cos ;- vy sinyg, (35)
(n) _ .(n) (n)
Fiel,k tjk sin Yin + Fik €95 Y, (36)
where for fixed k, one advances from j = | to j = n using the definitions
) =-.l-.(n-l) 0
= (37)
0 I ,
n ]
Pl = - 5kn, Yon = 1/2 x , l( ) =1 . (38)

By separating the variation of the orbital exponents and the rotation
‘matrix parameters it is not necessary to recompute the atomic integrals
when the rotation matrix is being optimized. The entire procedure becomes
an iterative scheme which is illustrated in Fig. 1. Each block is essen-

tially independent, and its output serves as input for the next.

Introduction of atomic orbital basis

-
The orthogonal basis functions, xor, are generated from a non-orthogonal
basis set by the symmetric transformation

;or - ; §-|/2 - (39)

where S is the overlap matrix for the x's. Introducing Eq. 39 into Eq. 10,



the natural basis can be expanded in the non-orthogonal basis set as

g=X0D (L0)

where

p=5"%1 | (41)

= = =

is the transformation which carries the non-orthogonal basis ; into the
natural basis 3.

When a new basis function is added to a previous set of M basis fune-
tions, it is important to construct the initial guess in the (M + 1)~
dimensional function space in such a way that it is at least as good as the
optimal wave function obtained previously in the M~dimensional space. The

proper form of D for this to be the case is

(o] (o} (o]
Dll LI LI ID'Z ¢« o o l?li e o s .?I,M"‘l
2M+I = o e & & « @ -0 LI R I N .Dii L I ) .0 (1*2)
. :o . :o
DM+I’I * o DM+]’2 e o DM"'I,i « o o DM+I,M+‘

where Dzj = [(__S_o)-‘/2 lojkj is the k,j'th element of the old wave function
and QM+| is of the order (M+1). This form guarantees that the M natural
orbitals
o . g
g. =Sy, 0 .= % D", G #£1i) (43)
are identical with the old natural orbitals. Since the (M+1)'st of the new

natural orbitals, viz.,

M+I~ )
g, = o;al %o B (k4)



is required to be orthogonal to those of Eq. 43, it is completely deter-

mined, and its coefficients are

-1/2
D,,=[1 -2 5.,6..]
i a(#i) ai o
(45)

Dot = = Dy 8q (#i)

where
v« 1O 0 ; .
Oui é 5 g Si Op {@,B,v1) (48)
DY

with

Saﬁ = de X X‘B (47)
whence

Sop = Sgﬁ , if oi and B#I . (48)

The relation 45 can be derived by a Schmidt-Orthogonalization of the form

¢i = const. {xi - az(f#.)(falxi) ‘605}
i

and is related to a method suggested by Lowdin (45) for orthogonalizing two
internally orthogonal basis sets. |If it is desired to add more than one
basis function to the previous M basis functions before reoptimizing the

parameters, the procedure outlined by Eqs. 42 and U5 is repeated as often as

necessary.

. . M+1
To carry out the parameter variation it is necessary to factor D

according to Eq. 41 and to obtain the set of parameters which characterizes

+ +
;M ]. Since §M+' is known for the new basis, the orthogonal matrix lM Vs
given by

P (sf1) 172 g

. (49)
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The M(M#1)/2 parameters, vy, which cha:acterize lM+I can be determined by
choosing an arbitrary set, Ya? and varying them until the inequality

L LV AL IR (50)
is satisfied. The convergence of Eq. 50 is facilitated by choosing initial
values of the Wé's so that those connecting two old basis functions have
the optimal value of the corresponding v in the M-dimensional basis, and

setting those Wé's which connect the new basis orbital with the old ones to

ZCIr0,

Strateqy of optimizing the natural orbitals

In the determination of the APSG wave function for beryllium and the
first row four electron ions by MR, the final wave functions were built up
from minimal, single determinant wave functions by systematically adding
one or more basis orbitals and reoptimizing at each stage. The number of
NO's retained throughout the variational procedure was always the maximum,
ie€s, the same as the number of atomic basis functions. This method was
taken over here. Another strategy would be to start with the Hartree-Fock-
SCF wave function and determine the APSG wave function from that point of
departure. |f the latter procedure is used, n(2m-n-1)/2 primary parameters
out of a total of m(m=-1)/2 parameters are determined initially by the
HF-SCF procedure or its equivalent (where n is the number of geminals and
m the number of basis functions, and one has m> n). The addition of the
remaining natural orbitals, i.e,, m-n more, furnishes (m-n)(m-a~1)/2 addi~
tional secondary parameters which can be varied.

The method outlined in Eqs. 42 and 45 for adding one basis orbital at
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a time makes it very convenient to vary all parameters at each level at
which the wave function is reoptimized, Since the initial fuqFtion in

the expanded basis remains always very close to the optimal wave function,
the variation procedure does not have to move very far in parameter space
to find it. Nevertheless the calculation becomes quite time consuming If
the number of molecular orbitals goes beyond 15. In the alternative scheme
mentioned above the secondary parameters are arbitrary prior to reoptimi-
zation, however, the wave function would at least be as good as the HF-SCF
wave function, and therefore, the variation procedure would perhaps, here
too, not have to move too far in parameter space if a judicious initial‘
choice of the secondary parameters can be made. After the wave function
has been expanded to m natural orbitals and optimized in terms of the
secondary parameters, the primary parameters may have to be revéried in
order to obtain a reasonably optimized wave function. |t would be .valuable
to establish the relative merits of the two schemes by comparitive calcula-

tions in the determination of similar wave functions for similar systems,

Computational Considerations

The computer program is logically similar in structure to the diagram
in Figure 1. At certain intervals the input data is updated so that the
calculation can be stopped and restarted without the loss of intermediate
resultse Blocks A and C are minimization schemes based on a method
suggested by Powell (U46) which determine the optimum values of the orbital
exponents and rotation matrix parameters. The largest portion of computing
time is spent in block B, evaluation of the atomic integrals, and blocks D

and E, formation of the geminal matrix elements H?}. In the independent
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particle calculation where the wave function is represented as a single

Slater determinant, evaluation of the atomic integrals is usually the rate
determining step. In the context of an APSG calculation the single deter-
minant wave function involves evaluation of only one of the geminal matrix

elements per geminal, namely

1 2

n
(Hpngs Hengs =« o Hpyod -

Here the subscript PNO means prinicpal natural orbital. Extension of the
geminals beyond the PNO rapidly increases the number of matrix elements
which must be calculated, These matrix elements are made up of the molecu~
lar integrals, many of which are quadruple sums over the atomic integrals
such as
(4, ¢ | b, 5] = kf' &". Dok Pgkr Ot Dges [kk! |47, (51)

and it is due to the large number of molecular integrals which arise that
the time needed to evaluate all of them is about twice as long as that
needed to evaluate all the atomic integrals for a calculation of the total
energy. For example, in the LiH wave function, which is expanded in terms
of 18 basis orbitals, it takes approximately 15 minutes to calculate the
energy. The atomic integrals require about five minutes, and the rest of
the time, 10 minutes, is spenf forming geminal matrix elements., The solu-
tion of Eq. 23 proves to be a trivial part of the calculation.

From the computational point of view the new feature of this calcula-
tion is the introduction of the rotation matrix and its variational para-
meters. Within a given symmetry type the number of rotation matrix para-

meters which arise for m basis functions is m(m=1)/2, whereas cnly m
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orbital exponents are needed, Due to the stringent symmetry requirements
in atoms the number of rotation matrix parameters is small even for large
basis sets. In diatomic molecules, the relaxed symmetry yields a large
increase in the number of parameters which can be varied. This can be seen
by comparing Li and LiH where seven and seventy parameters are free to be
varied respectively, From Eq. 51 it is seen that the molecular integrals
must be recomputed each time any of the parameters are varied, while the
atomic integrals need to be recalculated only when the orbital exponents
are varied, In contrast to the single determinant calculation the time
consumed for evaluation of the molecular matrix elements is as important

as that used for the evaluation of integrals;"
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WAVE FUNCTIONS AND ENERGIES AT THE EQUILIBRIUM DISTANCE

Basis Functions in Diatomic Molecules

Atomic orbital basis

The basis functions are taken to be real Slater Type Atomic Orbitals

(STAO's) with origins at the nuclei, and have the form

x=c " Y, (0,0) (52)
where
= (20)™ 3 (2n) 17/ (53)
and
|m] cos m /[ (146_ ) x]'/2 m> 0
M, (8:m) = 0, 2 (54)
4m sin|mo/ x m<O0

and the(?cm are normalized associated Legendre functions (47). The use of
Slater Type Atomic Orbitals rather than elliptic orbitals as basis func~
tions for diatomic molecule wave functions has one important advantage in
that it is possible to calculate ''corresponding' separated atom wave func=
tions. In the present application of the separated pair model, the conclu-
sions made concerning its efficacy in the general case have been signifi-
cantly influenced by the separated atom results. Moreover, since a major
aim of quantum chemistry is the study of chemical reactions, it is essential
that wave functions of comparable degree of approximation can be determined

for both reactants and products.

Symmetry considerations

It can be shown (48) that the APSG wave function can be constructed to

conform to the desired symmetry state of the system under study by forming

—_—
| —
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it from symmetry adapted geminals. The energy expression Eq, 14 has been

restricted to singlets with the spin function

8(1,2) = [a(1) B(2) - a(2) 8(1)] /Y2 (55)
and doublets with the spin function
8(1) = a(1) or B(1) . (56)

The space geminals are constructed from symmetry adapted natural
orbitals, The ground state of LiH and BH is ]2+ and the natural orbitals
must be eigenfunctions of Lz such that Lz = 0. The natural orbitals for the
atoms must be eigenfunctions of tz as well as Lz. The ground states for Li
and B are 2 and 2p respectively (49). Symmetry adapted natural orbitals
are constructed by using a transformation matrix which does not mix basis
functions belonging to different symmetry states, i.e., the elements of D
which would mix more than one symmetry type into a natural orbital vanish.
Since the STAO's already belong to a given symmetry the orthogonalization
matrix §-1/2 will automatically have the proper block diagonal form, and the
problem is reduced to constraining T to reflect the same symmetry. From
Eq. 34 it is seen that each of the parameters which determine T connect two
basis functions, and T can be made block diagonal by requiring that Wbﬁ = 0,
if & and P denote states belonging to different symmetries.

As an example consider a six basis function expansion

(57)

(@, Ops Tgs Ty Ty 7,)

where a and b indicate the two centers. If the qu's are constrained so

that only those which connect functions belonging to the same symmetry state
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do not vanish, there will be three non-zero parameters Yo o.? Y& ox.-
a’’b a’’b

Ve ’Rb’ and T will be in block diagonal form, From Eq. 41 it is seen that
a
D will then also be in block diagonal form; and therefore six natural

orbitals are obtained
(¢0]J 02, ¢ﬂ"’ ¢“2’ ;‘,’ diz) (58)

where the subscripts denote the symmetry of each natural orbital. Moreover,

the n and n states are made doubly degenerate by choosing Ya oz identical
a’"b

in value to ﬂ%r 1 'O conform to the X state,
a’"b

Selection of basis functions

The choice of type and number of basis functions is dependent on
several factors. Enough basis functions must be included to account for
the different types of correlation which are present in the hydrides: a
description of in=out-cerrelation is given by s=type orbitals, sigma orbi-
tals yield a description of Ieft*riéht correlation, and angular correlations
are accounted for by pi and delta orbitals. For each basis function added,
a new natural orbital can be added, describing one of these correlations.
However, each basis function also serves to improve the expansions of the
natural orbitals already present in the wave function. An example is the
addition of the 3dx orbital to hydrogen in LiH. |t generates a natural
orbital yielding 0.00058 hartree of correlation energy in the bonding
geminal, and it also increases the correlation energy recovered by the =
natural orbital already present in the bonding geminal by 0.0010 hartree.

The APSG wave function for LiH is expected to be a closer approximation

to the true wave function than the one for BH. This is essentially due to
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the fact that LiH seems to correspond more closely to a system with well
defined pairs than BH, and it is only for such systems that the APSG approx-
imation can be expected to yield good wave functions. Since one of the
reasons for constructing these wave functions is to test the capability of
the APSG wave function to approximate the true wave function for diatomic
moleculés, the LiH wave function is refined to a considerably higher degree

than the BH wave function.

Separated Pair Approximation in Li and LiH

Geminal expansions

The APSG wave functions for Li and LiH are

3 ; =& (, [(ep-paV2] ¢ o]

(59)
3y =B (A, [lep-palV2] Ay [(ep-payV2]}

where /\k denotes the K-shell geminal, AB the bonding geminal and dL is the
unpaired electron natural orbital in Li., The LiH wave function is deter-
mined at the experimental equilibrium separation of 3.015 bohr (27). The
space geminals, AM’ are assumed to be expanded in the natural form according
to Eq. 2. Due to the strong orthogonality condition, Eq. 6, the natural
orbitals are uniquely assigned to one of the two geminals in LiH, while in
Li all except one of the natural orbitals are assigned to Ak. Within each
geminal the natural orbitals can be arranged in order of decreasing
occupancy and, because they are symﬁetry adapted, assigned to a symmetry
class. This suggests, for the natural orbitals, the notation Midj with the

following meaning:
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M is the geminal to which the NO belongs;
i is the order of the NO by decreasing occupancy in
the M'th geminal;
@ designates the symmetry class of the NO;
J is the order of the NO by decreasing occupancy within
its symmetry class in the M'th geminal, Generally
the greater j, the more nodes the NO possesses.
In LiH, the APSG wave function is a superposition of 18 natural orbitals,
nine in the K-geminal and nine in the B-geminal. The structure of each
geminal is schematically represented by the charts:
K-geminal

Overall order (i) I 2 3 4 5 6 7 8 9

Order within £ (j) 1 2 3 L 5
Order within T (j) 1 2 3
Order within A (j) 1
B-geminal (60)

Overall order (i) 1 2 3 4 5 6 7 8 9

Order within Z (j) 1 2 3 4 5 6
Order within 1T (i) 1 2 3 .

Thus, the K-geminal has three n natural orbitals, namely K3xl, K522, and
K7n3. Some of the wave functions for Li and LiH discussed later on have one
or more of their natural orbitals omitted. These will be represented by
charts similar to those given in 60, with dashes (~) for the omitted NO's.
The Li APSG wave function is expanded in terms of six natural orbitals

with five in the K-geminal which has the structure
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K=-geminal
Overall order (i) 1 2 3 4 &5
Order within § (j) 1 2 (61)
Order within P (j) 1 2
Order within D (}) 1

The unpaired electron occupies one natural orbital and thus needs no further

clarification.

Natural orbital expansions

The natural orbitals of the LiH wave function are linear combinations
of 18 STAO basis functions, thirteen of which are centered on Li and five on
H. The Li natural orbitals are expansions of seven STAO basis functions.
The basis orbitals and their orbital exponents are given in Table |. The
separated atom wave function is constructed to correspond as .closely as
possible to the hydride wave function, so that meaningful estimates of the
binding energy can be made. The explicit expansions of the atomic and
molecular NO's in terms of the Siater Type Atomic Orbitals, i.e., the
D-matrices are given in Tables 2Vand 3, which also contain the occupation

coefficients.

Transferability of K-geminal

The concept of transferability of certain pair functions, in particular
inner shells, is a well known conjecture (50). A great deal of computa-
tional effort could be saved if a geminal could be determined once, in the
atom for example, and then inserted into the molecular wave function
whenever it appears. Moreover, this would imply that such a geminal is only
weakly affected and remains essentially constant in structure as the

electron environment changes from one system to the other. If this is

——
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actually the case, one would furthermore expect that, in the calculation of
difference properties, the detailed correlation structure of such a geminal
might be omitted without introducing a significant error. It is tﬁerefore
of considerable interest to investigate this conjecture on the basis of an
accurate ab=initio calculation.

For a comparison of the K-shell geminal of LiH with that of Li it is
necessary to relate the K-natural orbitals occurring in the two systeﬁs.

This correspondence is indicated by the following chart:

Atomie

K-NO's g Pl b

Klsl Klol

K2s2 K202

K3p! Kko3 K3n) (62)

Khp2 K905 K5x2
K5d1 K8ak K7x3 K661

For example the five (K5d1)-NO's of the Li atom split into one o-NO, two
n~NO's, and two §=NO's in LiH. Quantitative insight in the similarities is
furnished by Table 4, which lists the occupation coefficients for all these
orbitals and also the overlap integrals between corresponding atomic and
molecular NO's. From the close agreement of the occupétibn coefficients
and the fact that all overlaps are close to one, it is apparent that both
geminals have nearly identical structure. An exception is thé4kK905) NO of
LiH which differs markedly in occupation and spatial distribution from the
(thZZ) NO of Li. However, because of its small weight it does not alter
the general similarity and,. in fact, the overlap between the two geminals
is estimated to be 0.997. By way of comparison it may be mentioﬁed that
the PNO of the bonding geminal and the L shell NO of the Li atom have an

overlap of only 0.64748,
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An ecven more detailed comparison can be made on the basis of Tables 2
and 3 which confirms the close correspondence, It can also be seen from

the contour maps of the NO's. The corresponding maps are as follows:

Atomic NO Atomic Contour Molecular NO ~ Molecular Contour
Klsl Map No. 19 Kilol Map No. |
K2s2 Map No. 20 K202 Map No. 2
K3pl Map No. 2] Kie3, K3l Maps No, 3, 4
Khp2 Map No. 22 K905, K5n2 Maps No. 5, 9
K5d! Map No. 23 K8k, K7n3, K66l Maps No. 6, 7, 8

Bonding geminal

The structure of the bonding geminal is also given in Table 3. The

PNO is approximately given by

(Blol) = 0.17(Li-L2s) + 0.21(Li-L2p5 + 0,17(Li-L3s) + 0.66(H-1s)  (63)
and thus exhibits a strong polarization toward the hydrogen as indicated by
the magnitude of the coefficient multiplying the H-1s orbital. This also
is true for all secondary sigma NO's except for the molecular orbitals
(B85) and (BYc6) which are, however, both very weakly occupied. The pi
natural orbitals show the same strong polarization toward the hydrogen as
the sigma natural orbitals. In fact the two most strongly occupied pi
orbitals are almost entirely hydrogenic, whereas the weakly occupied (B7x3)
NO is the only one with significant density near Li. Thus, as has been
observed before (51), lithium hydride has considerabie Li+H- character.

As is the case for the K-shell, the occupancies of the NO's decrease
with increasing number of nodes in regions of significant density, which
can be easily seen from the contour maps. Two NO's which have the same
number of nodes have approximately the same occupancy. The magnitude of

the accupancy is of major significancé_iﬁ determining the effectiveness of
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a natural orbital in recovering cdrrelation energy as will be discussed
later.

It is also of interest to compare the PNO's with the SCF NO's. In Li
the (L1s1) orbital is essentially the SCF orbital, Its orbital energy of
-0.19591 hartree differs only slightly from the SCF result of ~0,19632
hartree (52). In LiH, comparison of the (Blo]) NO with the localized bond-
ing SCF orbital determined by Edmiston and Ruedenberg (53,54), and the
cananical iF-SCF orbital, indicates that tt is closer to the latter rather
than to the former. This situation was aiso found in MR for the first row

beryllium-like ions.

Enerqy of Li and LiH

Table 5 exhibits various aspects of the energy results obtained for Li
and LiH. The total energy recovered by the LiH APSG wave function is =~8.054]
hartree, and -7.4694 hartree for Li, which are 99.80% and 99.89% of the total
experimental energy (10). This means that about 80% of the correlation
energiesa are recovered- for the two systems. The binding energy calculated
from the two APSG wave functions is 2.30 e.v. or about 90% of the experimen-
tal binding energy. The fact that the wave functions for Li and LiH both
recovered about 80% of the correlation energy, and the marked improvement in
the predicted binding energy when compared to that predicted by the HF-SCF
wave functions, indicates that in Li the three electrons form a discrete pair
and a lone electron, and in LiH the electrons form two discrete pairs.

The total energies and the binding energies obtained by the PNO single

®The total correlation energy is defined as E(HF-SCF) - E(exact), and the
correlation energy recovered by the APSG wave function is E(HF-SCF)-
E(APSG).
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determinant wave function and that calculated from the Hartree-Fock SCF
wave function are also given, The fact that these results dif%er by only
0.0008 hartree confirms that the PNO wave function is very close to the HF-
SCF wave function. The Hartree-Fock SCF calculations quoted is that of
Cade and Huo (10), and also experimental quantities are taken from their tab-
ulations. Their investigation is hereafter referred to as HF-SCF, The SCF
result of Clementi (52) is adopted for the lithium atom.

In view of the close similarity of the K-geminals in Li and LiH, it is
of interest to know how the binding energy is affected if all natural orbi-
tals except the principal one are omitted from the K-shell geminal in Li as
well as in LiH. As is seen from Table 5, this type of calculation yields a
binding energy of 2.347 e.v. confirming agaln that the K-shell plays no

essential role in molecule formation.

Comparison with other calculations

h TheiHF-SCF wave function for LiH determined by Cade and Huo (10) has
been used extensively throughout the present investigation as the upper
bound for cémbaring correlated APSG wave functions of LiH. Their wave func;
tion is expanded in terms of 16 Slater Type Atomic Orbitals; twelve are
centered on Li and four on H, It yields an energy of -7.98731 hartree.

Five other calculations on LiH are also included in Table 5. The wave
function of Bender and Davidson (55), constructed from a basis of elliptic
orbitals, gives the best energy result to date. It is a.superposition of 45
configurations which were determined using expansions in the natural orbitals.

It is superior in that it contains configurations describing both intrashell

and intershell correlations, whereas the APSG wave function coftains only
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configurations de5cribihg.ig££gshell correlations. It yields an energy of
-8.0606 hartree. The occupation numbers of their principal inner and outer
natural orbitals are 0.99705 and 0.9749 which are close to the K- and
B~geminal PNO occupancies found for the present wave function.

The APSG wave function of Ebbing and Henderson (17) is extracted from
a Cl wave function obtained earlier by Ebbing (18). Ebbing's wave function
is a linear combination of 53 configurations where the molecular orbitals
are expanded in terms of elliptic functions, and it yields an energy of
-8,04128 hartree, The geminals of Ebbing and Henderson can be illustrated
by the charts:

K-geminal

Overall order (i) 1 2 3 4L 5 6 7 8 9

Order withinZ (j) 1 2 3 4 -
Order within I (j) - - -
Order within A (j) -
B-geminal (64)

Overall order (i) t 2 3 4L 5 6 7 8 g9

Order within (j) 1 2 3
Order within I (j) - - -

which are to be compared with the geminals given in chart 60. |In order to
relate the present APSG wave function to the one of Ebbing and Henderson, all
the NO's not contained in chart 64 were eliminated so that the geminals
would be similar i1 structure to those of Ebbing and Henderson. This wave
function yielded an energy of -8.024] hartree as compared to =-8.0179 hartree
for their wave function. The difference appears to be due to the considera-
bly extended sigma basis used here and the optimization of the present wave

function. In addition their PNO result of -7.98167 hartree is slightly
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higher than that obtained here. The correlation energy attributed to the
inner and outer pairs by Ebbing and Henderson is -0.0186 hartree and
-0,0176 hartree (espectiVely, while the corresponding quantities obtained
here are -0,0207 hartree and -0.0208 hartree. A comparison of the contour
diagrams given by Ebbing and Henderson with those presented here for the
NO's enumerated, show the similarities between the sigma natural orbitals
of the two wave functions.

Another recent Cl calculation by R. Brown {56) using elliptic basis
functions yicelded an energy of =8.0556 hartree with a 69 term wave function,
The occupancies of his principal inner and outer molecular orbftals is
0.9970 and 0.9716._4The wave function determined by Brown and Matsen (57) is
of the valence bond=configuration interaction (VB=Cl) type. Their wave
function is made up of 28 configurations constructed from both elliptic and
Slater type basis functions. They obtained an energy of -8.056! hartree and
determined values for the spectroscopic constants; Wg s and WeXg s They also
obtained an eight term wave function for Li from which a binding energy of
2.34 e.v. was calculated for LiH. The fifth calculation, by Harris and
Taylor (58), is an open shell (VB-Cl) type, with a wave function made up of
four configurations using elliptic basis functions. They reported an energy
of -8.0387 hartree, and also determined a three configuration wave function

for Li. From the latter they obtained a binding energy of 2.3 e.v.

Separated Pair Approximation in B and BH
Boron and its hydride are the simplest atomic and diatomic cases where
more than one electron pair are situated in the same region of space. They

are therefore well suited for studying the applicability of the separated

pair model to more complex systems,.in that complications which might arise
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are easily isolated.

Geminal expansions
The APSG wave functions for B and BH have the form

8, = (0, [ (0B-pa)V2] Al (0p-Bo)N2] 8
(65)

By, =8 (0L (ep-pa)N 2] A [ (0B-Ba)/N 2] ALl (0B-B)/V 2]}
where. the geminal, ALP’ denotes the lone pair (LP) function. The BH wave
function is determined at an internuclear separation of 2.329 bohr, which
is 0.005 bohr less than the experimental equilibrium distance of 2.336 bohr
(29). Since the NO's are symmetry adapted the notation introduced for them
in the dis;ussion of Li and LiH can be adopted.

The APSG wave function for BH is expanded in terms of 18 natural orbi-

tals, and six are assigned to each geminal. The structures of the geminals

are as follows:

K-geminal
Overall order (i) 1 2 3 4 &5 6
Order within & (j) 1 2 3 L )
Order within I (j) 1 ’
B-geminal
Overall order (i) 1 2 3 4 5 6
Order within £ (j) 1 2 3 4 (66)
Order within I (j) 1 2 |,
LP-geminal
Overall order (i) 1 2 3 4 5 6
Order within & (j) 1 2 3 &
Order within 1 (j) | .

The B wave function is a superposition of seven natural orbitals. The



35

geminals have the structures:

K-geminal LP~-geminal
Overall order (i) 1 2 3 Overall order (i) 1 2 3
Order within S (j) 1 2 Order within S (j) 1 2 (67)
Order within P (j) 1 Order within P (j)- ] .

The oda electron in the B valence shell is represented by a NO with P
symmetry. |{f this orbital has pz character, then it must be orthogonal to
the pz' admixture of AK and ALP' Since the K and LP geminals are, however,
both ]S, they contain px', py', and pz' orbitals in a symmetric fashion.
Consequently the strong orthogonality for pz' Indirectly restricts the

forms of px' and py' as well.

Natural orbital expansions

The natural orbitals of the BH wave function are linear combinations
of 18 STAQ basis functions, of which fourteen originate from B and four
originate from H, The B natural orbitals are expansions of seven STAO
basis functions. The STAO'5 for the atom and the hydride are exhibited in
Table 6 with their orbital exponents. The natural orbital expansions in
terms of the STAO's are given in Tables 7 and 8 together with the occupa~-

tion coefficients.

Transferability of K-geminal

It is of interest to examine the question of the transferability of
the K-shell pair in B and BH as well as in Li and LiH. The change in
symmetry that BH undergoes upon separation is more drastic than that which
LiH experiences. It can therefore be anticipated that the K-shells of the

B-BH pair will not be as similar as the K-shells of the Li~LiH pair.
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In order to campare the two K-geminals it is necessary to obtain the
correspondences between the K-natural orbitals of B and the K-natural orbi-
tals of BH. Comparison of the structures 66 and 67 shows that the BH

K-geminal has two more natural orbitals than the B K-geminal. In order

that the two K-geminals have equivalent expansions, the two weakest @ NO's

of the BH K-geminal are omitted, so that

BH K-geminal
Overall order (i) ' 2 3 L &5 6
Order within & (j) 1 2 3 - -
Order within I (1) ! ,

The correspondences between the NO's are displayed as follows:

Atomic Molecular
K=NO's K=NO's

g 1
Kisl Klol (68)
K2s2 Kbo3
K3pl K3o2 K2l .

Comparison of the quantitative similarities can be obtained from Table 9
where the occupation coefficients and overlap integrals for these natural
orbitals are given. It is seen that the occupation coefficients of the
respective NO's are still close and that the overlaps are not very different
from one. The main source of difference appears in the overlap between the
K-PNO's, which is somewhat smaller than for Li~LiH. The values of the
overlaps given in Table 9 yield an estimated overlap of 0.97 for the two

geminals.

A more detailed comparison of the K-NO's can be obtained from Tables

7 and 8, The corresponding contour maps are as follows:
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Atomic NO Atomic Contour Molecular NO Molecular Contour
Kisl Map No. 43 Kial Map No. 25
K2s2 Map No. U4k Kbo3 Map No. 28
K3pl Map No. 45 K302, K2nl Maps No. 26, 27

Bonding geminal

The structure of the bonding geminal shows that BH is less polarized

toward the hydrogen than LiH. The bonding PNO is approximately
(Blol) w~ 0.22(B-L2ps) + 0.33(B-L2pa') + 0.52(H-1s) (69)

and the coefficient multiplying the H=1s basls orbitsl is considerably
smaller than in LiH, The contributions to the bonding PNO from Boron are
essentially from po-type orbitals, whereas Eq. 63 shows that in LiH it is a
mixture of s-type and po-type orbitals. Most of the secondary natural orbi-
tals have significant density near both nuclei. Only the (B3xl) orbital is
predominantly hydrogenic, but this is due to the requirement that it must be
orthogonal to the (LP2x1) NO.

The (L1pl) orbital of B is close to the SCF orbital and has an orbital
energy of -0.3078 hartree as compared to -0.3099 hartree (52) for the SCF
orbital. In contrast to LiH, comparison of the (Blol) and (LPlol) natural
orbitals with the localized SCF orbitals and the canonical SCF orbitals

(53,54) shows that they are closer to the localized orbitals;

Lone pair geminal

A comparison of the LP-geminals of the two systems is also of interest
since they furnish some insight into the severity of the strong orthogon-
ality constraint and the inherent limitations due to the types of double

excitation which can be obtained with a single product of pair functions.
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The structure of the BH LP-geminal to be compared with the B LP-geminal is

BH LP-geminal
Overall order (i) 1 2 3 L 5 6

Order within & (j) 2 3 - -
Order within 11 (i) 1 .

A comparison of the geminals can be obtained by displaying the correspon-
ding LP-NO's as was done for the K-shell NO's. Two such charts are given;
the one on the left gives the correspondences in terms of the natural orbi-
tal notation, and the one on the right replaces that notation with the
occupation coefficients of the NO's so that the electron distributions can

be compared:

Atomic Molecular Atomic Molecular
LP=NO's LP=-NO's LP-NO's LP-NO's

g n [¢} i
LP1s1 LPlgl E 0.9999  0.9738
LP2s2 LP3c2 -0.0050 -0.0160
LP3p] LP4o3 LP2xl -0,0050 -0.0102 -0.1600 .

It is seen that the LP-geminals of the two systems differ considerably in
structure. The secondary orbitals of the B LP-geminal are very weakly
occupied, and it is essentially the PNO orbital. The amount of correlation
energy recovered, 0.0009 hartree, is small. In contrast, the (LP2xl) SNO's
of BH are strongly occupied and recover a large amount, 0.0445 hartree, of

correlation cnergy.

It is of interest to compare the actual form of the (B-LP3pl) NO with
the two corresponding (BH-LP4o3) and (BH-LP2xnl) NO's. This can be done
with the help of the explicit expansions given in Tables 7 and 8 which

yield approximately

(B-LP3p1) =~ 1.3(L2p') - 1.6(L2p) (70)



39

(BH-bo3) =~ 1.5(B-L2pc) - 1.4(B-L2po!) (71)

(BH-LP2x1) ~ ~1.1(B~L2pa") (72)
or, more easily, with the help of the contour maps 28, 32, and 48, It is
readily recognized that the atomic (LP3pl) orbital and the molecular (LPho3)

orbital have essentially 3p character (one angular and one radial node),

whereas the molecular (LP2w1) orbital has essentially 2p character (one
angular node only). The reason for this change in nodal behavior is as
follows: In the atom the secondary pg-type orbital in the LP geminal has
to be orthogonal to the po-type orbital of the unpaired electron, whence

its radial node. For symmetry reasons this character must also be adapted

by the secondary pr-type orbitals of the LP-geminal as was discussed above.

In the molecule this symmetry requirement is, however, removed and po=-type
and pr-type orbitals are no longer tied to each other. Therefore, the
secondary pr-type orbitals of the LP-geminal are not restricted by an
orthogonality requirement to any other n orbital with high occupation
number. It is clear that a 3p-type orbital, with its additional radial
node has a higher kinetic energy and thus a higher promotional energy than
a 2p-type orbital., |t has therefore a weak occupation number and is much
less effective in recovering correlation energy. The removal of this radial
node from the (BH-LP2x1) orbital upon molecule formation thus creates a
possibility for a stronger occupation and for recovering substantial corre-
lation energy which was not available in boron.

It might be pointed out that even if the strong orthogonality condi-
tion is relaxed the (Llpl) NO of boron can only be mixed into the B LP-
geminal through triple exéitations since doubly excited configurations which

would mix this NO into the B LP-geminal would vanish., This fact points out
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a serious limitation of wave functions built from a single product of

geminals.

Energy in B and BH

Various aspects of the energy of B and BH are given in Table 10, The
total energy obtained by the boron APSG wave function is -24,5622 hartree
and that of BH yields -25.2053 hartree, which is 99.62% and 99.66% of the
experimental energy (10). The single determinant and HF-SCF energies are
also given. The correlation recovered by the APSG wave functions for these
two systems Is considerably less than that recovered for Li and LiH. |t is
25.69% and 46.47% of the total correlation energy for boron and BH respec-
tively. The reason for the difference in correlation energy recovered by B
and BH is due to the loss of a good LP-geminal in B. It may be that the
small amount of correlation recovered by BH is also caused by the need for
the bonding and lone pair geminals to share certain orbitals for describing
intrashell correlation, However, it seems more likely that the intershell
terms are important in this case, which also requires going beyond the
single product of separated geminals for their recovery. Because of the
large difference in correlation energy recovered, the estimated binding
energy is greater than the experimental binding energy and has a value of
3.858 e.v.

Since the K-geminals of the two systems are still quite close, the
binding energy obtained from the B and BH wave functions with the K-shell
correlating NO's removed has also been calculated. It is 4.105 e.v. which
again confirms the fact that the inner shells of B and BH are not quite as

similar as those of Li and LiH.
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Comparison with other calculations

The number of calculations which have been done on BH is surprisingly
few. BH seems to be an excellent system for studying the capabilities of
various approximations to handle a more complex case while still having few
enough electrons to be manageable. In addition, the unusual magnetic pro-
perties of BH have been investigated using SCF wave functions (59,60), and
it will be of interest to apply correlated wave functions to the calcula-
tion of these properties.

The HF-SCF wave functlion for BH determined by Cade and Huo (10) is
used as the upper bound for comparing the correlated APSG wave functions
obtained in the present investigation. Their wave function is expanded in
terms of sixteen Slater Type Atomic Orbitals, twelve of which are centered
on B and four on H. The HF-SCF energy obtained from this wave function is
given in Table 10.

The recent calculation by Harrison (61) is the best one prior to the
present one. With a VB-Cl wave function constructed from Gaussian basis
orbitals, an energy of -25,1455 hartree was obtained. Ohno (62) determined
a 13 configuration wave function for BH constructed from Slater Type Atomic .
Orbitals. It yielded an energy of -25.110 hartree, and with a two configur-
ation wave function for B he obtained a binding energy of 2.22 e.v. The
calculatién of Kaufmann and qunelle (€3) is an SCF type, and an energy of
-25.1298 hartree is reported. Their wave function is constructed from

Gaussian basis orbitals.

4
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CORRELATION ANALYSIS AT THE EQUILIBRIUM DISTANCE

Formulation of Correlation Energy

In order to obtain some insight into how the separated pair model
describes correlation, it is desirable to partition the wave function and
the energy into two parts, one being essentially the optimal independent
particle contribution, and a remainder, which can be attributed to correla-
tion. Since the PNO wave function is very nearly identical with the
Hartree-Fock Self-Consistent-Field wave function, it can be taken as a
nearly optimal representation of the Independent. particle model.

A useful partitioning can be obtained by decomposing each geminal into

a PNO part and a correlation term, namely

1\“(1,2) = ﬁ‘m(l) 25“0(2) +4 A“(l,z)

(73)
aA(1,2) = ZC, {¢,;0) 6,2 -c,4,()4¢.,(} .

Insertion of these identities into the general formulas 1 and 2 yields the

corresponding decomposition of the total separated pair wave function.

& = 3(PNO) + Ad(corr) . (74)
The overlaps of the correlation term with the PNO term are given by

Jfer o, Bol) 4,52 a4, (1,2) = C -1

[ dr 3(PNO) A 3(corr) = 3 o=

and, in LiH and BH, are found to be 0.00002 and -0.00000 for the latter.

From this division of the wave function the following partitioning of
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the density matrices of Eqs. 7a and 7b is obtained:

1y = 49 ] i
pu(l,l ) pu(l,l ) +Apu(l,l )

, (75a)
ap(151') = ", G {a,; (104,00 -4 ,(1)d 0] )
n (15251152 =u;(1,2; 1152') + 801 (1,25 1,2
(75b)

R

A uu(l,zz 1',2t) = 2<K“-‘)iic C . {¢m(l)ﬁui(z)%(l‘)eﬂuj(?) -

880 (18,, (208, (108 (201

By virtue of Eqs., 8 and 9 for the total density matrices, Eqs. 75a and 75b

yield a decomposition of the energy into a PNO part and a correlation con-

tribution
E = E(PNO) + AE (76)
where
E(PNO) = Z E(uo,u0) + T I(po,vo) . (77)
7 <y

For the correlation energy AE, one obtains

_AE = T AEQR) + T Al(u,v) (78)
[V H<v :
with g _

AE() = T AEQi.uj) = 2 € .C . AS(uisuj)

is) isJ b (79)
BEGi ) = EQuispj) - 6ij E (o,p0)
M,v) =2 AI(ui,v) = Z ciicfj a9 (i ,vj)

i:j i-’j

(80)

M (ai,vi) = 1Guisvi) = 1Go,vo) .
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This energy partitioning is that suggested by MR, and it has thus been
shown that it can be derived from a corresponding correlation partitioning
of the APSG wave function, namely that of Eq. 7h.

It is furthermore of Interest that the variational Eq. 23 for the

occupation coefficients can be written in the form

?Al-l“i"j Cj =0 S (81)
where

AH'i*J. = H";‘j - H“;J. (PNO) )

= 0EQip) +6.. T % cf. s wivi)
Jv)j M

and

Aeu = Gp‘ - €u°

(83)

=€ - {E(uo,po) + v?#u) | (uo,vo) }

are further quantities characteristic of correlation. Whereas AE(u) is’ the
intrageminal correlation contribution, the quantity Aﬁ# represents the

energy change due to correlation of the geminal within the context of the

entire system.

General Results
The correlation analyses resulting fof Eqs. 78-80 for Li, LiH, B, and
BH are given in Tables 11 through 14, These tables are similar in structure
to those given in MR for the L-electron atomic systems.
A number of conclusions reached by MR are confirmed by the present

results. Among these are:

1. The principal source of energy lowering in the separated pair
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approximation are the intrageminal correlations AE(W). The
terms Al(u,v) are smaller and may be either negative or
positive.
2, The main contributions to the intrageminal correlation AE(j)
come from orbital interactions between the principal NO's and
the secondary NO's. Contributions arising from interactions
between other strongly occupied NO's and the secondary NO's
also lower AE{u), but are smaller than the PNO contributions.
3. For each secondary NO, two types of energy quantities ocecur:
The negative 'exchange' energies, AE(ui,uj), and the positive
'promotion' energies E(ui,ui). For the weakly occupied NO's
the promotion term eliminates approximately one-half of the
exchange terms.
L, 1f Eq. 79 is written in the form
AE(W) = 'z'..“ AE (ui) (84)
with
AE (i) = '3: AE (i 5p) - (85)
one finds that AE(uo) is by far the largest contribution.
For the moderately occupied NO's the AE(ii) are usually
negative, and for the weakly occupied NO's they are very
small and may be negative or positive. The AE(ui) are the
orbital correlation energies, and the AE(ui,uj) are the
orbital interaction energies.
Even in BH, where the separated pair function clearly does not recover

all the correlation effects—-one finds that whatever is recovered is still

mainly due to the terms AE(uo). Furthermore, according to Eqs. 79 and 85
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AE (o) = j(go)cm c " A8 (wospj) - (86)

and, since the exchange integrals AE(uo,uj) are positive, it is seen that
AE(uo) is appreciable and negative only if there exist one or a few secon-
dary orbitals for which c“J is opposite in sign to (:M.0 and remains strong
enough so that CHDCHJASQLO,HJ) is effective. For the K-shell this implies
qu of about -10'2, and for the L-shell it requires CHJ of about -IO-}, it

therefore appears that, even in cases where the separated pair approximation

can not recover all correlation effects, it can recover intrashell correla-

tions If geminals can be constructed which contain, In addition to the

principal natural orbital, at least one moderately occupied secondary orbi~ __ .

tal with occupation coefficient opposite in sign to the occupation coeffi-

cient of the PNO.

K-shell Correlation Energies

The main feature of the K-shell geminals is that the bulk of the corre=-
lation energy is recovered by two or three moderately occupied NO's. In LiH
the K-shell orbital interactions AE(Klol, K202), AE(Klol, K3x1), and AE(lal,
Klig3) recover =0.03164 hartree of a total of -0.03582 hartree. The (K202)
orbital describes K-shell in-out correlation, and the (Kio3) and (K3xl)
orbitals describe atomic angular correlation. Most of the K-shell cﬁrrela-
tion in BH is recovered by the orbital interactions between the (K302),
(Kho3) , and (K2r1) secondary NO's and the K-PNO, namely -0.02495 hartree out —
of a total of =0.0260 hartree. The (Khio3) NO describes in-out correlation
and the (K302) and (K2rl) NO's describe atomic angular correlation in BH.
The separated atom K-geminals show similar features.

The difference in the amount of correlation recovered by the K-geminals
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in the hydrides is not clear, especially since in the separated atoms the
correlation recovered is nearly the same., It is seen that the loss of
correlation ;;ergy in the K-geminal of BH is associated with the ¢ secondary
NO's, whereas the correlation energy recovered by the n SNO's remains about
the same in the two systems. |t appears therefore that the L-shell elec-
trons in BH are interfering with the K-shell secondary NO's in such a way
that the orbital interaction energies of the o K-NO's are decreased. More-
over, this interference appears to depend only on the electron population of
the L-shell, since, if it also depended on the nuciear charge, one would

expect to find the decrease in effectiveness of certain K-shell secondary

NO's in both BH and B.

Bonding Geminal Correlation Energies

Some of the features of the B=geminals are similar to the K-geminals in
that, here again, the bulk of the correlation is recovered by two or three
secondary natural orbitals. Another characteristic which can be mentioned
for both the K- and B-geminals is that, for those cases where the APSG
approximation is effective, one has AE(p) asAeu, while for the less effec-
tive ones one finds AE(u) < AGM'

One of the interesting points brought out by Tables 12 and 14 is that
some of the intrageminal correlations of moderately occupied orbitals are
positive. In their analysis of the Ebbing and Henderson (17) wave function
for LiH, Miller and Ruedenberg already noted this feature for the orbital
X; and wondered whether it would persist for a more accurate wave function.
Actually one finds for these positive'contributions a sum of 0.0015] hartree,

which is greater than the 0.00120 hartree obtained by Ebbing and Henderson.
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Such positive contributions seem to be peculiar to the bonding geminals of

both LiH and BH and do not appear in the other geminals.

Lone Pair Geminal Correlation Energies

The differences between the LP~-geminals of boron and BH have already
been discussed. It is seen that the LP-geminal of BH has only one secondary
orbital which recovers substantial correlation, namely the (LP2rl) NO. As
was pointed out in MR the contributions to the intershell interaction are
essentially between strongly occupied NO's, i,e,, they are mainly non=
dynamical interactions (6h4)., This situation Is still true here, and, in
particular, the large value of AI(LP,B) in BH is almost entirely due to the
interaction Al (LP2xl, Blol). On the other hand, Li, LiH, and B have no
strongly occupied secondary NO's, and thus the intershell interaction terms
are either small or negligible.

In comparing the results for LiH and BH it is seen that the decrease in
effectiveness of the separated pair approximation is characterized chiefly
by a decrease in magnitude of the AE(u) contributions, and the appearance of
non-negligible positive contributions in the intergeminal jnteraction terms.
In the worst cases, such as the B LP-geminal AE(LP) is nearly zero, and the

geminal reverts to the Hartree-Fock orbital.
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WAVE FUNCTIONS AND ENERGIES AS FUNCTIONS OF THE INTERNUCLEAR SEPARATION

Determination of Wave Function and Energy

terpolation of Parameters

In order to find wave functions and energies as functions of the inter-
nuclear distance, R, it is necessary to perform the minimization procedure
at various values of R. The number of parameters to be varied is 88 and 102
for LiH and BH, respectively, and therefore a complete variation is possible
only for relatively few points. On the other hand, it is clear that the
optimized parameters will be smooth functions of R, and one might expect
that this fact could be exploited to reduce the need for independent minimi-
zation at each value of the internuclear distance. This idea is pursued
here: A detailed minimization is carried through at selected values of R,
and a parameter interpolation procedure is developed for intermediate values
of the internuclear distance.

The reasonableness of such an approach is suggested by the fact that
the values which the various parameters assume in the separated atoms do not
differ greatly from the values which are found for the hydrides at the inter-
mediate distances discussed in the preceding section. Consider first the
parameters Yo determining the matrix J. Most of them vanish in the atoms
since the elements of T connecting orbitals belonging to different eigen-
values of tz and L, vanish. In the hydrides the analagous v's are all close

to zero. In LiH there are seven y's which do not vanish for R = « and their

maximum change is such that

0 < |y(R=3.015) - y(R=w)| < /8 . (87)

For BH, there are 13 v's which are non-zero in the separated atom limit and,
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with one exception, they vary within the range
0< |y(R =2.329) - y(R =w)| < n/tt . (88)
The exception mentioned is Vi, L ? 25 is evident from the following list
]

v(B-Lpo,B-Lpa!) y(B-Lpw,B~Lpn')

B -0- 9723"} "‘0- 9723h
BH -0.83956 ~2, 10426 .

The splitting of the atomic v(B-Lp,B-Lp') parameter into the two molecular
parameters, y(B-Lpo,B-~Lpg') and y(B-Lpx,B-Lpx'), is of course due to the
change from spherical to cylindrical symmetry, However, even W(B;Lpn,B-Lpn‘)
changes only from ;2.11004 to ~2,11223 as R changes from 2.2 to 2.7 SOhr.

Finally, inspection of Tables | and 6 shows that the difference between
the orbital exponents at R = Rg and R = = is also small enough to suggest
the possibility of an interpolation.

The approach outlined here is found to yield good results as well as a
considerable reduction in computing time. It should therefore be of parti-
cular interest in larger systems, where the problem of many parameters is

even more severe,

Optimization at reference points

As discussed in the previous section, complete optimizations were
carried out at R = 3,015 and 5.329 bohr for LiH and BH respectively. Addi=
tional detailed independent minimizations were performed at the internuclear
distances R = 2.8, 4.0 and 8.0 bohr in the case of LiH and for R = 2.2, 2.7
and 5.0 bohr in the case of BH. However, these minimizations did not com=~
prise all parameters in each system; only those which could reasonably be

expected to show a significant change with the internuclear distance were
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varied.

In the preceding section, it was pointed out that certain geminals such
as the K-shell geminals in LiH and BH are rathér insensitive to the changes
in electroni¢c environment occurring during molecule formation. It was
furthermore found that the binding energy was little affected when the
secondary natural orbitals were omitted in these geminals. In view of these
results it seems likely that the secondary NO's of such geminals hardly
change with R, and the parameters which are most influential in their
determination will very nearly keep the values obtalned for them at R = 3,015
for LiH and R = 2.329 for BH. 1If this is the case it should be adequate to
reminimize only' the remaining parameters and, furthermore, to omit the
insensitive secondary NO's during the course of such minimization. 1f the
computer program is appropriately constructed the omission of certain NO's
" can be accomplished by simply setting the corresponding matrix elements in
Eq. 23 equal to zero.

On the other hand, it is important to retain all K-shell basis orbitals
because they are required for a good representation of the Qring}gal hatural
orbital of the K=shell. That this is so can be"seen by coﬁparison with the
K-orbital of the HF-SCF wave func;ion which, as has been seen before, is
very close to the K-PNO. Similarly, it seems desirable to retain all outer
shell basis orbitals to maintain optimal representations for the retained

natural orbitals, Thus, wave functions with geminals of the following

natural orbital structure were optimized at the aforementioned values of R:
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- LiH K-geminal
Overall order (i) 1 2 3 L 5 6 7 8 9

Order within Z (j) 1 = - - -
Order within I (j) - - -
Order within A (j) - s
LiH B-geminal
Overall order (i) 1 2 3 4L 5 6 7 8 9
Order withinZ (j) 1 2 3 4 - -
Order within I (i) 1 2 - ’
and
BH K-geminal

Overall order (1) 1 2 3 4 5 6

Order within & (j) 1
Order within I (j) - )

BH LP-geminal

Overall order (i) 1! 2 3 4 5 6
Order withinZ (j) 1 2 3 - =
Order within I (j) i s

BH B-geminal
Overall order (i) 1 2 3 4 5 6

Order withinZ (j) 1 2 3 - -
Order within 11 (i) 1 .

It may be noticed that certain very weakly occupied binding and lone pair — -
orbitals are also omitted. Since there are now less natural orbitals than
basis orbitals the number of independent parameters Yij introduced by Eqgs.
34-38 for the orthogonal T matrix are also reduced. The correct number of
independent parameters is taken into account if one excludes from variation
those Vi for which both indices, i and j, refer to any one of the omitted
NO's.

The reduction in the number of NO's leads therefore to two kinds of

calculational economies: A number of matrix elements H%} of Eq. 23 are
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omitted, and the number of +-variations is reduced. Of these two the former
savings is more significant and amounts to about a 50% reduction in comput~
ing time.

The orbital exponents were varied for all R values mentioned, except
for R = 8 and 5 bohr in LIH and BH respectively. At these large distances
the gain of such variation seemed to be too small to justify the investment,

After the described optimizations had been carried out to determine the
orbital exponents and the I matrix, the values of the parameters were then’
taken as adequate representations for all natural orbitals of the full wave
function. Using these orbital exponents and T matrix elements to calculate
the matrix elements H%} between all natural orbitals, the occupation coeffi-
cieﬁts were determined from Eq. 23 to yield the full wave function and
energies at the aforementioned points of R. The resulting wave functions

are given in Tables 15-20,

Enerqy as function of R

Graphs 1 and 2 give the energies for LiH and BH as functions of the
internuclear distance. They are based on energy values calculated at
intervals of 0.05 bohr. The parameters are obtained from a linear interpo-
lation between the previously discussed reference boints. A summary of some
of the relevant energy results are listed in Tables 21 and 22 respectively.

Graphs 3 and 4 contain a comparison of the PNO energy curves with the
HF-SCF energy curves of LiH and BH. The two types of curves are very nearly
parallel. In LiH the maximum deviation from being parallel is 0.00018
hartree, and in BH it is 0,0052 hartree. This parallelism seems to confirm

that the interpolation optimization scheme used here is indeed satisfactory.
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Electronic Structure as Function of Internuclear Dfstance
Essential features of the dependence of the electronic structure of LiH
and BH on the internuclear separation can be obtained from examining the
occupancies of the important natural orbitals which are summarfzed in Tables
23 and 24, and the changes of the intra= and intergeminal correlation
energies displayed in Graphs 5 and 6 as functions of R. Only the occupan-

cies of the PNO's and the moderately occupied SNO's are given in the tables.

Inner shells

It is seen from both the occupancies of the NO's and from the correla=
tion energy plots that the K-shells of both hydrides are essentially inde-
pendent of R. The maximum change of the occupancy of the K-shell PNO of LiH
is only 0.00026, and in BH it is 0.00004. These changes, and the very small
changes in occupancy exhibited by the K-shell SNO's have esséntially no
effect on the overall electronic structure of these hydrides as R increases.
In his recent calculation of theIS+ states of LiH, R. Brown (56) notes the
same trend, and the maximum change in the occupancy of his principal K-shell
configuration is 0.0002]1 which is remarkably similar to that found here.
Comparison of the K-shells of the two systems shows‘igat the BH K=-shell is
less affected by changes in R than LiH. This is perhaps due to the fact

that in BH half of the valence shell electrons essentially retain their

atomic character.

Character of bonding geminals

The behavior of the bonding geminals is determined by the fact that the
(Blol) and (5202) NO's must pass to the natural orbitals for the lone elec-

trons of the separated atoms. The other natural orbitals of the bonding
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geminal become vacant for an APSG wave function. This fact is indicated by

the form of Eq. 16 where it Is seen that the intrageminal term,
CRURILALI

natural spin orbital for an odd electron. Furthermore, Eq. 33 shows that ﬁ4

], reduces to zero when the bonding geminal Is replaced by a

and ?kui,ui become identical for an unpaired electron and hence the natural
spin orbital for it is an approximation to the SCF orbital, In the previous
section this was indeed found to be the case for LI and boron.

The detailed nature of the passage of the bonding geminal to the separ-

ated atom geminal is given by the following relations (65): Considering

only the first two natural orbitals, the bonding geminal is approximately

Ny~ €5 8,(1) 8,(2) + Gy 8,(1) #,(2) (89)
with
6, =A+B
é,= A - B

where A represents the basis expansion originating from center A, and B
represents the basis expansion originating from center B. The transition
from two strongly interacting valence shells to two weékly interacting
separated atoms can be seen by writing AB in the equivalent form

Ag = (Cgy + Cgo) 1,(1) 9,(2) +9,(1) ¥,(2)} 7 2
(90)

+(Cg - Cgo) (9,(1) $,(2) +9,0) $,(2)} / 2
with
P, = (8, +8,)/ 2
(91)
b, = (8, - 8,)/ 2 .
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For very large R one finds (note that Cgy > 05 65y < 0)

Cpy * Cpo<<C,, = C

Bl B2 Bl B2

and finally at infinite separation CBI = *CBZ so that

Mg = 1, (1) 9,(2) +9,(0) g (2342 . (92)

This behavior of the occupation numbers for the (Bicl) and (8202 orbitals
can be seen from Tables 23 and 24. In LiH the occupancy of the Blol) NO has
decreased from 0.9712 at R = 3.00 bohr to 0.7908 at R = 7.00 bohr, and at the

same points the B202) NO has Increased from 0,0151 to 0.2067 so that (CBI+CBZ)

has decreased from 0.86284 to 0.43457, and (CBI-CBZ) has increased from
1.10818 to 1.34391. BH shows similar trends as can be seen from Table 24,
The concomitant change in the natural orbitals 61, ¢2, $| and wz of
Eqs. 89 and 91 is illustrated in Diagrams 1-6 for the LiH molecule. These
diagrams are similar to the ones given in Appendix B, and details concerning
their use may be found there. (The solid lines denote positive regions of
the orbital while the dashed lines denote nega§SVe regions and the dotted
lines are the nodes). Diagrams | and 2 represent the (Blol) and (B202) NO's
at R = 3.00 bohr; Diagrams 3 and 4 are the same NO's at R = 7,00. Compari-
son of Diagrams | and 3 and 2 and 4 clearly shows the shift of electron
density from the bonding region to the regions around the two nuclei with
the concomitant formation of the Is orbital for H and the 2s orbital of Li.
The formation of the separated atoms is seen even more clearly from the plots
of the separated atom orbitals, ¢I and $2 at R = 7.00 bohr, exhibited in
Diagrams 5 and 6. It is apparent that at this distance the H orbital wz has

very little admixture from the Li atom, whereas the more diffuse Li orbital
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still interacts to some extent with the H atom. It is clear from Diagrams
5 and 6 that wl is approaching the 2s orbital of Li and wz is approaching

the ls orbital of H.

Correlation in bonding geminals

Further insight into the behavior of the bonding pair is gained from
examining the changes in correlation enefgy as the nuciear separation is
increased, and are exhibited in Graphs 5 and 6. The change in character
of the (B202) NO from a moderately occupied correlating orbital in the
bonding geminal to the strongly occupied orbital A' - B' appears as a rapid
increase of the absolute value of AE(B) with increasing R. This increase
i's associated with the (Blol, B202) interaction since the orbital interac-
tions of the remaining SNO's are becoming weaker. For example, in LiH the
correlation energy associated with the (Blol, B3xl) orbital interaction
changes from -0,0122 hartree at R = 3,00 bohr to -0.0017 hartree at R = 8.00
bohr, which indicateé that the angular correlation is decreasing witﬁ
increasing R. At R = R_, AE(B) represents the energetic error due to inap-
propriate ''ionic terms' by which the ''MO-approximation'! ¢|¢2 differs from
the ‘''covalent QB approximation* of Eq. 92, which describes more appropriately
two weakly interacting separated atoms. The behavior of the total correla-
tion energy as a function of R and the correlation splitting between the
(B202) orbital and the (B3xl) orbital is in agreement with that found by
Davidson and Jones (66) in their analysis of the correlation splitting in H,.

The AE(B) curve of BH is similar to that of LiH, but its rate of change
is slower. This is perhaps due to the fact that because of the higher

charge of the boron nucleus it will be less affected by a hydrogen atom over
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an equal interval of R than Li. Examination of the correlation splitting
shows that, here too, the increase of AE(B) is due to AE(Blol, B202); where-
as AE(Blol, B3rl) changes from -0.0067 hartree at R = 2.329 bohr to ~0.0039
hartree at R = L.5 bohr and presumably goes to zero at infinite separation.
The behavior of the intergeminal correlation term Al(K,B) is due almost
entirely to the Al{Klol, B202) interaction which changes from an interaction
between a strongly and moderately occupied natural orbital to an interaction
between two strongly occupied natural orbitals. The former interactions are
in general small, whereas the latter are found to be fairly large and posi=-

tive. The magnitude of Al1(K,B) is, however, small in comparison to AE(B).

Lone pair geminal

The correlation changes occurring in the LP;geminal in BH are more
difficult to assess. The AE(LP) curve passes through a maximum near Re and
then appears to pass through a minimum near R = 4.00 bohr. On the other
hand, the Al(K,LP) curve seems to nearly offset the changes in AE(LP) so
that the overall result is that the geminal correlation energy, AGLP, is
nearly constant. This implies that it would have been possible to omit the
lone pair SNO's as well as the K-shell SNO's for this case. The details of
the structure of lone pairs and their effect on the total electronic struc~

ture appear to need further investigation.

Spectroscopic Constants
The spectroscopic constants for LiH and BH are calculated by using the
procedure of Dunham (67). The potential curves are expanded in terms of the

reduced coordinates p = (R - Re)/Re as
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V=a°pZU +Za, pk) |, (93)

K k°
and Dunham has given the relations between the spectroscopic constants and
the expansion coefficients of Eq. 93.

if a polynomial of the type of Eq. 93 is fitted to theoretical curves
such as those obtained here, the problem arises under which conditions the
coefficients a , are stable with regard to the choice of (1) the interval
chosen for p, (2) the number of points used in this interval, and (3) the
degree of the expansion polynomial which is fitted. Because, for any given
fixed value of R, the numerical minimization can never be complete, there
exists a certain random scattering of the computed energies around that E(R)
curve corresponding to mathematically perfect minimization at all points.
Because of this scattering there is a maximum degree of the polynomial whicﬁ
can be meaningfully determined by a least mean square calculation within a
finite interval, (Rl’ Rz), no matter how many points are included in the
fitting. Conversely, determination of a fourth degree fitting requires a
minimum interval length. |If the interval length chosen is such that a
higher degree polynomial can be determined, only then is it possible to
investigate if a fourth order approximation is an adequate representation of
E(R) in this interval. In any case, the number of points used in a least
mean square fit should be considerably larger than the order of the polyno-
mial to be found.

Another consideration is, however, essential for the present purpose.
Since the aim is comparison with experimental data, the curve E(R) should be
fitted over that interval which is sampled by the first four to six vibra-

tional levels, in as much as they are necessary to determine the
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experimental values of 39+ Ay and a,.

Since a number of points of the potential curve were obtained over a
fairly wide interval by the method outlined in the preceding section, a
least mean square program was used to determine polynomials of degree four
through eight for four interval sizes including the minimum, The minimum
point for each polynomial was determined by finding the value of R for
which the linear term vanishes. This minimum was used rather than insert-
ing the actual minimum of the APSG potential curve so that points near it
could be used without convergence problems. (The difference between the
two is only ~'10-3 bohr). The coefficients of polynomials of the fifth,
sixth, and seventh degree fitted to the LiH potential curve are given in
Table 25.

From Table 25 it is seen that the first and the second intervals are
not sufficient. The coefficients for the two larger intervals appear to
have settled down and agree to about two figures. Between the fifth and
sixth degree polynomials the agreement is also about two figures for a and
ags but only one figure for a; similar considerations apply to the seventh
degree polynomial. In LiH the fifth, sixth and seventh degree polynomials
give stable coefficients, in the largest interval, in the sense that the
higher order ones, aj..., are reasonably small. This is also the interval
which approximately corresponds to the first four vibrational energy levels.
The root mean square deviation of these polynomials is about 2 x IO-S.
Polynomials of higher degree givé fluctuating large coefficients for the
high order terms, which is indicative of random scattering of the energy
values to which the polynomial is being fitted. For BH the fourth, fifth

and sixth degree polynomials in the interval_.R = 1.90 - 3.00 bohr give



61

stable coeffizients, and have a root mean square deviation of approximately
1 x Io'u. Since the choice between stable polynomials seems arbitrary,
averages over the fift'y; sixth and seventh degree polynomials for LiH, and
the fourth, fifth and sixth degree polynomials for BH, are tabulated.

The resulting spectroscopic constants together with the experimental
values (29,68) and percentage deviations are given in Table 26, The spec=
troscopic constants, especially w.x,, are sensitive indicators of the degree
of agreement between the theoretical potential curve and the true potential
curve, and the results obtained here are quite good, The results calculated
from each polynomial for LiH showed less fluctuation about the averages than
those for BH. This is not surprising since the potential curve for LiH was
determined to a higher degree of optimization than the potential curve for
BH. The largest fluctuations are in the anharmonicity term, WeXgs and the
closeness of the average value to the estimated value for BH must be
interpreted with caution.

It is possible to determine the expansion coefficients of Eq. 93 from
the experimental spectroscopic constants and hence construct an "'experimen-
tal potential curve." For LiH Jorgensen and Crawford (68) have determined
all the constants through ags and for BH ags 3, and a, were determined from
the data of Bauer, Herzberg and Johns (29). Using current values for the
physical constants (69) and putting ag in atomjc units the two potential

curves

V. = 0.209502(1 - 1.88kp + 2.3780% - 2.473p7) (94)

LiH

Vo, = 0.531302(1 - 2.1150 + 2.873p2) (95)

BH
are obtained from these sources. They are to be compared to' the fifth and



62

fourth degree polynomials fitted to the APSG potential curves

Vy ;,(APSE) = 0.342602(1 - 2.4090 + 4.3320% - 3.947p%) (96)

Vg, (APSG) = 0.86092(1 - 2.647p + 4.0380%) . (97)

Graphs 7 and 8 plot the experimental and calculated potential curves of LiH

and BH, as well as their differences.
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CONCLUS 10NS

General Effectiveness of the Separated Pair Approximation
The present investigation has shown thast the separated pair model
yields good wave functions for some systems but not for others. From the
view point of the electron pair interpretation of chemical structure one
would have expected that the separated pair model would adequately and
completely describe both LiH and BH. In fact, it works well for LiH but.
only partially for BH. Thus the applicability of the separated pair approx-
imation appears to be more limited than previously realized. It has been
shown that thg inner shell electrons are in fact adequately described by
the separated pair approximation. Valence shell correlations, however, are
only incompletely accounted for if the atomic valence shell contains more
than one electron pair.
The shortcomings are of two types:
1. The strong orthogonélity constraint excludes the secondary
natural orbitals from recovering correlation effects in more
than one geminal.,
2. A single product of separated geminals neglects intershell

correlation.
To assess the relative importance of these two shortcomings it must be kept
in mind that even if the strong orthogonality constraint is relaxed, a single
product of pair functions is still limited in the type of double excitations
that can be constructed, As has been shown by Bender and Davidson (70) in a
CI-NO calculation of FH, a large part of the correlation is recovered from

split-shell excitations of intershell character which cannot be obtained with



a simple product of pair functions. It thus appears that the second 1imita=-
tion will prove to be the more serious one. One possible way of describing

Intershell correlations, which allows one to remain within the pair function
framework, is by the split-~geminal excitations of the augmented separated

pair approximation (71,72).

K-geminals

The application of the separated pair approximation to Li, LiH, B, and
within the context of the separated pair approximation., Moreover, it has
been quantitatively shown that the K-shell pair is little affected by changes
occurring in the valence shell, and therefore the detailed correlation struc-
ture of the inner shell can be omitted in the calculation of differences
between molecular and atomic properties. The inner shell in the molecule is
even less sensitive to small changes in internuclear distance. In fact, the
inner shell of EH is less affected by changes in R than the inner shell of
LiH.

The source for the decrease in the K-geminal correlation in BH as
compared to that in B needs further investigation. Perhaps this problem can
be overcome by a more general pair formulation; on the other hand the rela-
tive change of the K-shell correlation between them may be less in éystems
where the L-shells of both the molecule and the separated atom are highly

populated.

Determination of APSG Wave Functions for Other Systems
Through the analysis of the present calculations it can be concluded

that the effectiveness of the separated pair approximation in a specific
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case can be determined witﬁ a relatively small computational effort. Since.
the bulk of the correlation is recévered by two or three secondary NO's in
each geminal, the energy and other properties calculated from a wave func-
tion which inciudes only these NO's will be nearly as good as the energy
calculated from a wave function containing a much larger number of natural
orbitals. This is illustrated in LiH where a wave function expanded in
terms of the basis given in Table 1, but including only the first four
natural orbitals of each geminal given in the structure diagrams of 60,
yields an energy of -8,04956 hartree, This is only 0.00462 hartree higher
than the energy obtained from the total wave function. The time needed to
compute the energy for this wave function is 40% less than the time needed
for the total wave function, and the time taken to calculate the geminal
matrix elements after the atomic integrals have been calculated is only L0%
as long as in the total wave function. 1t therefore seems reasonable to
construct wave functions expanded in terms of the PNO's and one or two
secondary NO's in each geminal, which can then be analyzed to determine
whether substantial correlation has been recovered. Such wave functions
require little computing time for their optimization. In this way it would

be possible to rapidly survey a large number of systems to determine if the

separated pair model can be fruitfully applied to them.

Determination of Approximate Potential Curves
The results which have been obtained from the approximate potential
curves show that the method will give good qualitative results, and it
appears that with some additional refinements satisfactory quantitative

results can also be obtained. The principal benefit gained from this method
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is that many points of a potential curve can be determined for many=-
parameter wave functions without an inordinately large amount of computer
time.

The main difficulty encountered in the procedure is matching up the
potential curve at the end points of each succeeding segment. In order that
the segments are properly matched, the wave function must be carefully opt{-
mized to the same degree of accuracy at each value of R where the energy is
minimized. Experience indicates that the APSG wave function is more sensi-‘
tive to variations In the orbital exponents than the HF-SCF wave function,
and therefore it is essential that the wave function be reasonably optimized
in all its variation parameters if reliable quantitative results are to be
obtained. An additional refinement is that the parameters can be fitted
to higher order interpolation polynomials than the linear ones used here,

which would help smooth out scattering due to slight differences in minimi-

zation.
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PART 1. TWO-CENTER EXCHANGE INTEGRALS

BETWEEN SLATER TYPE ATOMIC ORBITALS
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INTRODUCTION

Calculation of electronic wave functions for diatomic molecules can be
made most effectively if Slater Type Atomic Orbitals are used as a basis
set and, in spite of well known difficulties, it may well be that, in the
long run, this type of expansion basis will also prove to be practical for
polyatomic molecules. In two-center problems, there appear three types of
electron repulsion integrals which present mathematical and computational
difficulties: The coulomb; hybrid; and exchange integrals and; because
efficient methods for their evaluation are essential,lvarious workers have
attacked the problem of general methods for their determination (73,74).

For all three integral types, new methods were recently developed in this
laboratory. While the analyses for the first two were published in previous
papers (75,76), the present note deals with some new developments concern=
ing the exchange integrals.

The basis of the method is the analysis which had been given some time
ago by one of the authors (77,78)._ Here we introduce several new develop-
ments which greatly increase the effectiveness of the procedure. A particu-
larly useful improvement ié an expansion of charge distributions between
. atomic orbitals in terms of products of powers and Legendre functions of the
elliptic coordinates. General formulas are derived for the coefficients
appearing in these expansions for the product of any two arbitrary Slater
Type Atomic Orbitals. These and other modifications lead to considerable

simplification, in particular for implementation on an electronic computer.
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GENERAL FORMULA FOR THE EXCHANGE INTEGRAL

Introduction of Neumann Expansion and Integration by Parts
The electron interaction integral under consideration is the two-

center exchange integral over arbitrary atomic orbitals

| = [av, [av, () 62) r7) (98)

where the charge distribution functions Q and Q are two-center functions

defined by
a(1) = XXp 6(2) = ia’zb 3 , (99)
and the x, are atomic orbitals with origin at i.
The integration is carried out in elliptic coordinates. |If L is the

radius vector of the electron from origin i, and R is the distance between

the nuclei, these coordinates are defined by the relations

L = RR(E+) ry = JRET)
5 = R(1480) 2, = R(1-€7)
(100)
1/2

2+ A2 = ¢+ yD% = Ry (D12 = L v

av = (3R)3(€%-1%) deendyp
where r is the magnitude of I and Xis ¥;s and z; are its components in
cartesian coordinates. It is assumed that the z, axis points from atom a
to atom b whereas the z, axis points from atom b to atom a, and that the
s Y, axes are parallel to the X3 Yp, axes respectively. For the inverse
distance (I/riz), the Neumann expansion (77) yields the following expres-

sion in elliptic coordinates
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& 4
4- !
(g = om x5 0" el elrle) of"l))

(101)
* ng(‘n 1°% ) Sl’m(nz:q’z)
where §| < §2, and §|,§2 must be interchanged in the prodiuct PQ if 5! > §2.

The Qz are the Legendre functions of the second kind, and the Pz are the

Legendre functions of the first kind (47). The real spherical harmonics,

3&!11’ are taken to be

Yens0) =@ ) #(n) Tatres 1772 (102

where the definitions
Tz
oy <[22 e
Pn) = (1-n2)™? (M (q) (103)
p{™ (1) = (arem)™ P, (1)

are used for the Legendre functions, and f(m) is defined as

: cos |m| P ifm>0
f(m) = (103')
sin |m| (0] ifm<0 .
Introduction of the Neumann expansion into | yields
_ _nym (4-mi)? lml .
=2 () -f,;;[—n;‘-g—.f‘:’ dg 0" (£)
(1ob)

: s
(048 [ o o7 0 8,000 + B006) [ 0y 2[710) (0]

where the second term in brackets has been obtained by an interchange in

the order of integration. The functions an(g) are found from Eqs. 100 and
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101 to be

, (8) = f dn.fz“ w32 Y, o) ane (105)

Since the total bracket term in Eq. 104 is of the form

F(x)dg(x) + a(x)df(x) = dLF(X)g(X] (106)

the integral | can be written as

=z 0" gl P arelr e o))

o [f ax p" () 0 (x)fdy Pl 8, 0

(107)

and then integrated by parts, the integrated part vanishing (78). Making

use of the relation

Q' - P = (-1)" B (15 (108)

for the Wronskian of Q and P, | is reduced to the form

| = o8) £ ( (109)
IiLm IT ) 2
where
g
fom = [(g2-n'/? Pl“" €)1 _]‘l dx le|(x) Qp (%) (110)

with QLm defined by Eq. 105,

The principal result of Eq. 109 is that the functions fLm(g) can be
evaluated separately and then combined in pairs to yield the integrais |,
as was pointed out previously (78). This results in a significant saving of
computational effort since the number of f&m arising from a given basis set

of atomic orbitals is very much smaller than the number of exchange
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integrals.,

Introduction of Charge Distribution Expansions
{n order to evaluate the functions fLm(g) and obtain a general formula
for the exchange integral, it is assumed that the charge distributions of

Eq. 99 are expanded in the following way:

& €2ndaE,n9) -z o 6-DF V2 BY ) T ()
m .

where n, are constants to be discussed later on, From Egqs. 105, 110, and
Ak

111 one then obtains

o (6) = Zul, [(e21) /Zplmly] fd (1Pl /2plml (3 (e ke 0
k
. (112)

Using Rodrigues' formula for the Legendre functions one finds for m > 0,

T -1 2(x) = ;EiT (P=1)™(e/dx) Hm(2-1) "
- Z—Li- L (4/an) P00 (113)
2/
_ (4tm)! dm  v4m
T (b-m)! vEO & t
where
I o )i (et 2
(114)
t = x-1

and similarly

(M2 o (em/2 Zoam v

(X I)I/2 m(x) & -m o v=o

Combining the results of Eqs. 113 and 115, and setting s=t/(E=1)=(x=1)/(E~)
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one obtains the result

£, () = e npal MM (/2 () ()2 e

K v tk S
(116)
4m
v+k+m(a”) / f % r ?
where
T o= g (117)
and
] - .
qj(z)=‘J; ds e 2% ¢, (118)

Inserting the right hand side of Eq. 116 into Eq. 109 for fLm and fLm

one obtains the following final formula for the exchange integral

5 ¥ dr W, (r) W 19
LA OO (19)

| =
where
W, (1) = O {12 () (m=1)72 I " @)Y £ MY (120)

v

and

b*"“=zcl" m 7(48 ). ' (121)
n K Lk

The summations over n, v, and k are limited by

0o<v<t |, k . <n<k +4

min — " = “max

kmin kmax
max < k £ min
n-4 n

where krﬁin and kmax are the limits of the summation over k in Eq. 111l.

(122)

These results depend on the form of Eq. 111 assumed for the charge dis-

tribution. It remains to show that this is indeed the case for Slater Type

Atomic Orbitals, and to derive general formulas for the coefficients w:k'
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CHARGE DISTRIBUTIONS BETWEEN SLATER TYPE ORBITALS

Decomposition According to Irreducible Representations of Cony

The charge distributions are chosen to be products of real Slater Type

Atomic Orbitals (STAO's) which have the form
= ol eTer E} (z/r ) (123)
X Ch im 2P

where

_ +172 ny
c, = (20)" /0(2n)!] (124)

If the components of the radius vectors r and LY in Xa and Xp? originating
from centers a and b respectively, are transformed to elliptic coordinates

as in Eq. 100, the product xa(g,n,¢)xb(§,n,¢) can be written as
= <5y [REMI™! REMI B
® (G @l EED ) L O80) (46,012 (125)

with

. N B
a = R(C,*,) B =R C) - (126)
From the relations between the trigonometric functions, one obtains,

for the functions defined by Eq. 103', the relation

2f(m) f(m') = pS(l-ép,_,6M+’o)f(pM)+) + f(pM) (127)
with the definitions

p=sign(m) sign(m') , s = sign(mm') sign(0) = 1 |
(128)

= |m + m'| R M_= lm - m'l .
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Using Eq. 127, the expression 125 can be rearranged in the form

xR (€217 ps (16, 18y o) FIBM,) wg g+ F(PH) wg

+ -
with
waw = K 4958, 9(g,-m e =P
where
q.=0
q_ = minimun (|n|, {m']) ,

K = [z(|+am0)(1+am.o)]«.|/z (Rga)nH/Z (Rgb)““”/z

2A+1 20141 (:1)-1 ol (L;m)(b'+m')]l/2

ZZni! ZZn‘;! m' m'

and the functions g are defined as

&=Lt

a(5,M=(em) "y @)t e (L5

Expansion of qu
Expanding Pém)(t) as (79,80)

L= i
SRICEE A TS ICN i

and using algebraic identities such as
(t+1) = (14EN)/(E+M) + 1 = (5+1) (141)/(5+7)

one finds by substitution and expansion in Eq. 133

L-m L=m

2q _ n=-4 v ol
d M) = (¥ z T (-0
sE) = ()" T Ko

« (£-1) ) am) LV (1) VM

(129)

(130)

(131)

(132)

(133)

(134)

(135)
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with - -

R = 777 Q) G- (136)

Expanding furthermore (§4ﬂ)n-& and interchanging summations in £q. 135 one

has
n 4-mkq -
gem= 2 3 ()M
o=t A=0 P
(137)

A
. R LA pum=r+q,, yrtq
(0" A () (1-n)

By virtue of these expansions, the product dezqg(g,n)g(g,-n) contalns

]
terms of the form (I-nz)M/2(1+ﬂ)6(l-n)° , which in turn can be expanded in
terms of the Legendre functions @T('ﬂ), the expansion coefficients being

given by
875 = {:mtn-nz)"’z @ M () (1m)

= [REEL (L)1 (L) 1720000 (gt (138)

L-M LaM. -
T 1P () (o) Coramen )™

Substituting the resulting expressions for dezqg(g,n)g(g,-n) in Eq. 130

one finally obtains

n+n'-M '
W = (§Z-I)M/2 e B g (g")k
k=q
. (139)
n+n
. EM ag  (ntm;n'tim';q,M) @ T_('ﬂ)

where the coefficients are given by
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- n=4y nt=4!
=K % ) (p_{) (p'-v)

a
Lk oA p'A!
(140)

A A

v Iogyrirt AL At plptrt-remig), (p'trer!-m'+q)
rr! rmq r'm'qg LM

The sum extends over all values of p,p',A,A!, for which n+n'+qfA+\'=p=p'=k,

with p,p';A,A' and r,r' limited by

t<p<n , L <p' <t
0<A<dt-mq , 0<A <4l-m'4q |, (141)
0<r<\x o< <A .,

The constants K, A, and B are defined in Eqs. 132, 136, and 140.

. m
Expressions for the Wp 1

With the preceding results, the coﬁstants wzk appearing in Eq. 111 can
be evaluated. To this end Eq. 111 is inserted into Eq. 105, which yields
2 2 k
q, (€) = -2 % 54 (g-1) (142)
k

as an alternative definition for the wgk

Substituting now Eq. 129 into Eq. 105 and integrating over ¢ one finds
]
_ 1/2
Uu(€) = PL(epty )/x) % 6y o [ G’lml "o
- (143)

|
* ey /1 0 o fo @lml Yq_sm

The integrals Idn@?f(n)(??(ﬂ) e PN which occur in this equation, can be
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evaluated with the help of the expansion theorem for spherical harmonics,

and the relation (79,81,82)

1
oy 1/2 ‘e
[ o @0 &5 = 07 Dntased 8175 1y, ()
where the |J+l/2 are modi fied Bessel functions, Thus, one finds

1
[ @ "), @pm e PN = [x(2un) (2641 /28]
(1)

: 2(-1)“‘“ @ (Y D6 S 0 a2

L 1,

4
where the ( I 3) are the Wigner 3-J symbols (81). Substitution of

M2 M3
Eq. 139 and Eq 144 in Eq. 143 yields in fact an expression of the type of
Eq. 142,
It is seen that the wgk are different from zero only ifm=pM+ or m=pM_,

and these coefficients are found to be

w K = (pS 6PM+,m + bpM_,m)(l + p5m’0)l/2
ntn' L+t
.[-(%'—gl)-]"z 5 ()2 a (-1)Y*(2041)
L=|m| Lk g=|L-t],2

(145)

S i “')(533) L2

where the constants a are given by Eq. 140, Consequently the summations

over m in Eq. 119 contain only the terms '!.‘M+ and ¥M_.
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DISCUSS 10N

Coefficient Matrices

The Eqs. 129, 134, and 139 together vield expansions for the charge
distributions in terms of products of the type

f(pM,)

2, €212 (E-1) K @P(n) 5PN
f(pM_)

(146)

where the coefficients a,, are characterized by the quantum numbers of the

Lk
orbitals In the charge distribution, and 3 symmetry designation, M. For
example, the charge distribution made up from a ls function and a 2s func-
tion is characterized by the label (Is,25,2+) (77). Since the matrices are
"determined completely when the quantum numbers have been specified, they
can be evaluated once and for all, and stored in a convenient manner,

From Eq. 138 it is seen that the relation between charge distributions

which differ only in that the centers have been interchanged is given by

2 Xy xgoat) = (DM 2 (kg oaM) (147)

Reference to Eqs. 100, 133, and 140 further yields the result that if the

quantum numbers from the two orbitals are related as

n-4 = n'-4! and L-m = L'-m' , (148)
then

api(pXg WM = 2y (XaXpsGH (149)
and

aj = o , if (L-M) odd . (150)

The number Na of unique charge distribution matrices [aLk} which arise
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for all combinations of orbital types from n=1 to n=N, is found by noting
that each combination in which one or both of the m's are zero gives rise
to one charge distribution matrix, whereas if both m's are #0, two charge

distribution matrices are formed. In this way one finds for Na the formula

N, = N(NHD) [[N(N+1) (2N + 20 + 5) + 6(2N+1)})/72 . (151)

Numerical Integration
The final integration indicated in Eq. 119 is done by Gauss-lLegendre

quadrature (83) in terms of the integration variable & given by

o= (r=1)/(r+1) , -l<o< ] (152)

The numerical integration is carried out over enough points to insure a
minimum accuracy of six decimal places. The number of points, Nl’ needed

for this accuracy is given by the relation

2
N, = 0.750; -8 + 33.25 (153)

where @ is the smallest value of %R(ga+gb) in a given basis set. In
addition the number of terms needed in the infinite series must be deter-
mined. It is found to be less than or equal to eleven terms for ali
intégrals involving Is through 3d§ orbitals and the maximum, Lmax’ is
10 even in those cases where the lowest value 4=M is different from zero.
Once N, has been determined, the values of all the integrands me(T)
are determined over the integration grid for all charge distributions and
stored. Then the integrals are computed from two charge distributions at a
time. Table 27 gives the time needed to compute all the integrals arising

from a g}ven basis set.
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Computation of Special Functions
The functions qj(x) introducgd in Eq. 118 are computed as follows:

The recurslion formula

X qj(x) =j qj'](x) _e'X (154)
with

qg(x) = (1-e7)/x (155)

may be used for all x except in a region x<f(j) where too many figures are
lost due to the subtraction in Eq, 154, In the latter region the infinite
series

k
X

[=2]
= il o™X :
%(ﬁ jle |§OT?HQJT 056.
is used for the highest value of j needed, and the recurrence formula 154

is then used in the downward direction.

The maximum value of j is found from Eqs. 116 and 139 to be

J.max = Lmax + nén! (157)

where n,n! are the principal quantum numbers of the orbitals in the charge
distribution. For all charge distributions including STAO's through 3dé,
one has jmax = 16. The exact form of f(j) is machine dependent. For an

IBM series 360 computer using double precision arithmetic
£(j) = 3(1+j/11) (158)

is sufficient to maintain eight significant figures in qj(x). For very

large x the approximation

qj(x) = j!/x‘i"'l (x> 81) (159)
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is sufficient,
The modified Bessel functions appearing in Eqs. 14k and 145 are
evaluated by noting that they are related to the diagonal elements of the

laﬁ functions which have been discussed elsewhere (84).
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VARY ORBITAL EXPONENTS

|

COMPUTE ATOMIC INTEGRALS

VARY ROTATION MATRIX ANGLES

+

COMPUTE MOLECULAR INTEGRALS

\

CALCULATE MATRIX ELEMENTS H"*J.

and

DETERMINE OCCUPATION COEFFICIENTS

Eq. 23

F
COMPUTE
—5 TOTAL ENERGY
Eq. 22
ouT

FIGURE I. SCHEMATIC DIAGRAM OF LOGIC FLOW FOR DETERMINATION

OF OPTIMAL APSG WAVE FUNCTION
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TABLE 1. BASIS FUNCTIONS FOR LI AND.LIH
LITHIUM LITHIUM HYDRIDE
ORBITALS  ORBITAL ORBITALS ORBITAL
EXPUNENTS EXP (R=3.015)
K15 2.4474) LI-K1S 2.48169
K25 3.19356 LI=-K2S 3.29233
K2p 4.24204 LI-K2Po 4.09184
LI-K2Px 4.21650
K3pP 4.,66054 LI=-K3po 5.68493
LI-K3px 4.73995
K3n 5.70550 LI-K3Do 5.71936
LI-K3Dn 5.69243
LI-K3D6 567957
L2S N.49152 LI-L2S C.67828
L3S§ 0.53297 LI-L3S§ 1.02091
LI-L2Po e 75366
LI-L2Px De76258
H-135 1.02951
H=-2S 1.13376
H-2P¢g 1.18804
H=2Px 1.16549
H—BD; 1.45935
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IABLE 2. TRANSFORMATION MATRIX AND OCCUPATION
COEFFICIENTS OF LITHIUM

K1S1 K252 L1S1
K1S 1.20118 ~3.13509 =0.17445
K25  =0.21171 3436868 =0,00440
LZS -0.01101 -0015837 1090367
L3S 000756 ~0.01768 =0.99065
“oCu 0.99871 ‘0002650 1.00000
K3P1 K4p?
K2p 0458489 =3.16509
K3p (e42T40 3419018

0O.Co ~Ce02420 =0.C0405

KSD1

K30 1. 00004

0.Ce -0,00381
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TABLE 3. TRANSFORMATION MATRIX AND OCCUPATION
COEFFICIENTS OF LIH AT R = 3,015 BOHR
z Klol K2g2 K4 o3 K8o4 K9o 5
{K1S1) (K252) {¥3pP1) {K5D1) (Ka4p2)

LI-K1S 1.18046 -3.,28409 0,06427 -0.02563 0.03070

LI-K28 =-0.,18782 3.48834 -0.08232 0.05680 ~0.05530

LTI~K2P =0,00207 0.00832 0.69621 0.24335 -8.40608

LI=K3P =2.00248 0,00936 0.33480 ~0.23811 8.37892

LI-K3D =0.00021 ~0.,00096 -0.00846 1.00096 0.02733

LI-L2S 600498 (.06547 -0,19280 -0,11589 0.15093

LI-L2P =0Q.01152 =-0.20859 -0,42008 0.08111 v.22750

LI-L3S =(0e01542 -0¢21465 ~0,04265 021330 -1a12555

H=1S =0.00957 -0.01134 ~-0.09830 0.02962 0.02319

H-2S 0,00276 0,14763 0.44003 ~0.,15814 ~0.08944

H-2P ~0.00067 =0.03595 0,02786 ~0.07459 0.09717

OOC. 0099883 "0.02463 -0002158 "0.00383 "'0.00142

) Blol B2oc2 B403 B504 B80S B9gé

LI=-K1S =0.11159 ~0e06425 -0.06640 0.08820 =Ce54C80 -0e43C68
LI-K2S -0.,002N5 =~0.,01589 =0,11964 -0,28318 1.10980 D.65767
LI=-K2P 0400353 =(j,00212 ~0.,00334 ~Q.00081 ~(.04719 -0.02178
LI=K3P C.N023U NeN0575 -=0.00101 -0.00963 0.C1654 0.03482
LI=K3D (00057 0.00025 000230 0,00132 «0.00179 -0.01244
LI=-L2S (0616953 055051 -0.22159 =1,18359 ~=7.34995 0.91454
LI=-L2P 0.21296 0.58765 000971 -0.96281 0.72548 1.48596
LI-L3S Uel6863 0445787 =0.07519 —-0.60934 7.98468 -Ne52409
H=1$§ Ne66120 =1e4TT7T8 0031235 =1.98857 (.12258 e21325
H-28S 032475 0642943 =0,22961 3.T77949 -1.11643 -1.38849
H=-2P 0e02121 ~0405818 1405159 0,61603 -0,57099 -0.4331C
DeCo 0.98545 ‘0012319 -0.05695 "0001232 -0000198 "0.0009"
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TABLE 3. (CONTINUED)
i K3nl Ksn2 K7x3 B3xl Béex2 BTn3
{K3P1)} {kK4P2) {K501)
LI-K2P 0.58208 -2.38791 -2.53682 0.00500 -C.00017 0.10783
LI~K3P 1ie43349 2.41641 2.58840 -0.01358 ~0.08327 -0.30859
LI=K3D =0,00666 =0.72798 0.68593 0.,00083 .00506 0.04236
LI=L2P =0.01686 =0.07911 =0.11449 0.06496 ~(,00906 1.27397
H-2pP -0.05197 0.01168 0.00410 0.95237 -0.17731 =-0.61469
H-3D ~0e01143 =0.00270 -0.05385 0416284 (99179 -0.46074
0.C. ~0a02411 -0.00386 -0.00383 —-0.07104 -0.00947 -0.00482
A K661
(K501)
LI-K3D 1.00000
D.C. "'0000384
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TAULE 4. OVERLAPS BETWEEN K-GEMINAL NATURAL ORBITALS
OF LI AND LIH AT R=3.015 BOHR
L1 LIH NG
NO 0.Ce NO 0aCa  UVERLAP
K151 0.99871  Klol 0.99883 0.99979
K252 -0.02650 K202  -0.02463 0.97813
K3P(Z)1 -0.02420 K403 =C.02158 0.95816
K3P(X)1 -0.02420 . K3zl  =0.02411 0.99791
K&PLZ)2 ~0.00405 K995 =0.00142 0.37677
K4p(X)2 -0.00455  K5x2 -0.00386 0.98740
k50 (2% )1 -0.00381  KBg4 - =-0.00383 0.99799
KSD(XZ) 1 -0.00331  K7x3  =G.00383 0.99885
K50(x?-¥?)1  -0.00381 K681  =-0.00384 0.99998
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FABLE %o CNRRGY RESULTS FOR LIH AND THE SEPARATED ATOM

TOTAL ENERGY OF PRESENT CALCULATIOM AT R=3.015 BUHR

LI+H LIH  {LI+H)=LIH £V
E(PNU) -7.93194 =7.98469 1.4353
E(PNO)=C{EXP) De04606 C.08554 —1e0742
E(PNO)=E(SCF) 0.00079 0.00262 -0.0498
g(ApsG')? ~7.93194 -8.01823 2.3480
E(APSG’ 1-E(EXP) 0.04527 €.05227 -0.1905
E(APSG) ~7.96943 =8.05418 2.3060
EC(APSG)—E(EXP) 0.00857 0.01632 =0.2108
E(EXP) -7.9780 =-8.0705 2.5169

CORRELATION ENERGY RECUVERED BY PRESENT CALCULATION

AE(CURR)=E(SC§)-E(EXP) Oei%527 0.08319
E(SCF)~E(APSG ) -0.00079 £.03092
PERCENT RECUOVERED 37.17
E(SCF)-E(APSG) 0.33670 0.06687
PERCENT RECOVERED 8l.C7 80.38

OTHER CALCULATIUNS

F(SGF) ~7.93273 -7.98731°  1.4851
B+#Dc (CI-NO, R=3.0(15) _e ~8.,0605 _e
B+M' (VB-CI, R53.046) -7.9700 -8.0561 2.343
B9 (CI, R=3.060) _e -8.0556 _e
H+TP (VB-CI, R=3,2) -7.9574 =-8.0387 2.212
E+B' (APSG-ND, R=3.7) _e -B8.0179 _e

zApss WITH CORRELATION K-NO S OMITTED
CLEMENTI REF. (52)

;CADE AND HUND REFe (1G)
BENDER AND DAVIDSON REF.

:LI+H WAS NOT CALCULATED
BROWN AND MATSEN REF.

9R. HROWN REFe (56)

hHARRIS AND TAYLOR REFe (58)
"EBBING AND HENDERSIN REF. (17)

(55)
(57)
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[ABLE: &.  BASIS FUNCTIONS FOR B AND BH
BORON BORON HYDRIDE
(IRBITALS  OREITAL DRBITALS oéBITAL
EXPONENTS EXP (R=2.329)
K13 4.23977 B-K1S 4444380
K25 5.28416 B-K2S 5.55292
K2p 6.96675 B-K2PC 6.33261
B-K2P 6.39500
B=K3Pg 6.24836
B-K30g B.49277
L2s 1.27652 B-L2S 1.35277
L2p 1.96288 B-L2PC 1.96917
B-L2P = 2.05102
B~L3PO 2.00045
B-L3Do 2.24698
L2s' 2.08748 B-L2S' 2.05631
L2p' 0.96345 B-L2Po’ 0.91141
B-L2P x' 1.33187
H-1S 1.24835
H-2S 1.97523
H-2P o 2.00664
H-2P n 1.57634
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TABLE 7. TRANSFORMATION MATRIX AND OCCUPATION
COEFFICIENTS OF BORON

K1S1 K252 LP1S1  LP2S2
K1S 1.21228 -2.86099 -0.02107 1.13008
K2S  =(.19022 3.21683 -0.04508 -2.09217
L2S  =D.16221 =-D.23871 0.95108 ~2.11668
L2s'  =0.03513 -0,12184 0.07766 2.86786
0eCe  Da99959 =0,01680 0.99995 =0.00499
K3P1 LP3P1l  L1PL
K2P 1.01608 0.48653 0400567
L2P  =5.04231 -1.62190 0.27398
L2P'  -C.17596 1.29969 0.7804C

O.Ce -2e01344 -0.00496 0657735
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TABLE 8. TRANSFURMATION MATRIX AND OCCUPATION
COEFFICIENTS OF BH AT R = 2,329 BOHR
z Klol K3g2 K4o3 K50 & K6o5
{K1S1} (K3P1) (K252}
B-X1$ 110613 0435058 -2.93794 0,03848 -0.122170
B=K2S =0ell572 =De41124 3.73420 =-0,05214 0.16796
B=-K2pP (100009 1.106409 0616919 0,00147 -2.37934
B=K3p 0. 00157 (.02119 =0.,05853 -0,06249) 3,33303
B=K3D =0.02015 002321 0,01077 0.98679 0.00656
B=L2S =J3.01081 -0.016344 1.42154 0.07219 -0.12353
h=-L2p 0eD0D388 =0.87173 —-0.02559 0.09234% -1.566332
B=L3P =~0.00339 9.03257 =0.02150 0.01221 0.0359¢
B=L3N DeDDNGY =0,010TZ =0,00928 0.35759 —0.01722
B-L25'  0.011500 0.09059 —2.04002 0,02932 =.13886
B=L2P'  0,00371 0.35345 0.07987 0,11969 .56482
H=1S  =Ce00067 ~0.21267 =0.29893 0,12028 -0,27287
H=2S  =0.00052 G¢25682 0a19869 -0.24439 U.52619
H=-2P NeD0J35 $aD8172 0602023 =0.19766 0.34832
JeCoe 0e99969 =0eM1181 =0.00968 =0,00271 =0.00264
) LPlol LP302 LP403 LP5c4 LP6035

B=K1S =e20529 =0.82166 DJ15181 ($.16336 (06411
B=K25 =0e31447 0.26487 =0.20729 -0,18981 -{,17884
B=K2P =0.30342 0.03043 -0.04863 -0.,09714 =-1,02327
BR=-K3p (60304 0.0UR90 ~0.06482 059978 3.22289
=K 35 LelINTBY ~MeN:1363 =0aulbl? =0.35105 0.33813
B-L2S Lo U0459 =2,25689 =(3439206 138232 2,34045
B=L2P =1e9005 =0,0Y9T76 153306 -2,13993 ~7.16247
B-L3p UeCl342 (QJNT812 =0.09490 3,22428 8.07031
R=L30 =0.01059 D.0LYT3 (015127 1.46601 =G.G5750
B=L2S' =0.N3924 2.60107 2435086 =0.18953 =(.20843
B=L2P' ~",266T7) =D.14159 =1,43702 «(,20807 -2.18820
H=18S Je13923  DT945 0661547 0662028 025971
H=2S  =0.02988 (019218 -0.21862 =2.43258 =-0,.72843
H=2P Ge00B29 =0e21422 =Ne40T93 =1.08379 =0.34577
JaCe 1497386 =0Ne01595 =Ne(1l018 =0400235 =0.00(86
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FABLE £+ (CONTINUED)

z 3101 B2a2 B403 B504
B=K1S =(e04804 N,1004)1 ~0e30994 0.04768
d=K28 =Ne01624 D1TL9 0436497 101533
B=K2P  e0N443 =0,D0915 0.16253 0.00113
B=K3P  0.,00179 0.N1086 0,12085 0.02359
B-K3D -0.00139 {(.00777 =0.01555 =0.00045
B=L2S ~=0e05363 =0.63379 =0.62983 0,27367
n-L2P ((e21548 =0.57113 =0,71241 =N,19590
BR-L3P 1.05393 =D.13245 0.45606 0.06172
B~L3) D«03958 ~0.03510 0.17430 0.03692
H=L25%" 1.08135 =2,10003 =0,07662 =%,31919
BeL2P U.33367 =0.49328 =N.54035 ~0.0B8364
H-1S © 0.51777 0.84820 0.38953 =5,18775
H=-25S Je 5447 DNe41126 V619245 5,29632
H=2p fe2330 ~0.03423 1,07235 0.03784
UeCe 0499377 ~0.09615 =0.02065 -0.00492

n K2nl LP2x) B83xl B6xl

(K3P1)
R=ik2P 1.08657 =0.00852 -0,01503 -0,6N435
B=L2P =%.,21944 0,07203 0.25761 2.70184
BelL2P! =uoNTT58 =1.09135 =0,60908 =2,30290
H=-2P 2e02534 0.07856 1.11425 0.16136
U.C. —/.3'31364 -0.16004 ‘0003694 -0000067
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TABLE 9. OVERLAPS RETWEEN K-GEMINAL NATURAL ORBITALS
(OF B AND BH AT R=2.329 HOHR

N BH NG
nNO eCou NO U.C. OVERLAP
151 Ne99959 Klol 0.99969 G.9849
K252 -0.01680 K4o3 ~0.07968 De 7604
K3P(Z)1 -0.01344 K302 -C.01181 1«9C43
K3P{X)1 ~-N.01344 K2xl =~ =0.01364 09935
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TABLE 10, ENERGY RESULTS FOR BH AND THE SEPARATED ATOM

- TUTAL ENERGY DF PRESENT CALCULATION AT R=2.329 BOHR

B+H BH (B4+H)=BH EV

CLPNO) -25.0273 =25.1220 2.577
E(PND)~E(FXP) 0.1307 041680 -1.714
E(PNO)=E(SCF) 0.0918 0.0094 -0.207
E{APSG')® ~25,0281 =25.1790 4,106
E(APSG')-E(EXP) 0e1299 0eo111¢ Ue514
E(APSG'') ~25.,0622 =25.2040 3,858
E(APSG!'! )-E(EXP) 0.0958 0.0860 0267
E(APSG) b -25.2053 b

ELAPSGY-E(EXD) b 0.0847 b

E(EXP) ~25.1580 =25,290 3,592

CORRELATION ENERGY RECOVERED BY PRESENT CALCULATION

AE(GORR)=E(SCF)=E{EXP) N.1289 . (.1586
E(SCF)={£(APSG") -0.0010 0.0476
PERCENT RECOVERED 30.01
EI(SCF)=-E(APSG ) 0.0331 0.0726
PERCENT RECOVERED 25.568 45,77
E(SCF)-E(APSG) 0.0739
PERCENT RECOVERED 46,60

OTHER CALCULATIONS

E{SCF) -25.0291¢ -25.13149  2.784
H® (CI, R=2.50) _f -25.,1455 _f
K+89 (SCFy R=2.336) f - =25.,1298 _f
ah (ct, rR=2.329) : -25.0289 =25.1105 2.22

@APSG WITH CORRELATING K-NO S OMITTED

bp+H WAVE FUNCTION WAS NOT DETERMINED FOR CORRESPONDING
BH WAVE FUNCTION

CCLEMENTI REF. (52)

dCADE AND HUO REF. (10)

€HARRISON REF. (61)

fB+H WAVE FUNCTION WAS NOT DETERMINED

IKALUFMANN AND BURNELLE REFe (63)

houMe  REF. (62)
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YABLE 11. CORRELATION ANALYSIS FOR LI
CONTRIBUTUR  ORBITAL® ORGITAL®Y  TOTAL GEMINALS GEMINALY
INTERACTION CORRELATIONS CONTRIBUTIONS ENERGIES
K1S1,K1S1 ~723604  =6.6115T
K1S1,K252 ~0.01182
KLSL,K3P1 -0.02090
K1SLyK&4P2 -0.00222
K1S1,K501 —0.07245
K151 -0.03739
K, OTHER -D.00012
K —0.03749  -0:03749
L1$1,L181 ~0e862037  -0.19591
K1S1,L1S1 0062447
AI(K,L) 0.0C000 600900 )
AE -0.03749
g ~7446943

3NUANTITY DEFINED BY EQ. 79
bQUANTITY DEFINED BY
CQUANTITY DEFINED 1Y EQS. Téy 77 AND 78
dUANTITY DEFINED BY EQ. 81

<

EQ. 85
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FABLF 12. CURRELATION ANALYSIS FUR LIH (R=3,315)
CONTRIBUTOR ORBITAL® ORBITALb TOTAL GEMINALS GEMINALd
INTERACTION CORRELATIONS CONTRIBUTIONS ENERGIES

Kl1al,Klol -7.8956%9 -6¢54489
KlolsK202 -0.01128

KlolyKéo3 -1.010645

Klol,K804 -1) o BONGL

K1ol,yK905 -Ue 0021

K1ol,K3n1 -(eN1394

KlolyK5n2 -0, 0N122

K101 ,K7n3 ~Ns00122

K1lol,Ké681 ~0,00150

Klgl ~0,03582

Ky OTHERS -0.00007

K -0.023589 ~-0.,03852
Rlol,B101 =2.43482 -1.08403
B101,820:2 -de1424

3101,B403 ~0e00N4173

Bl101,B504 -0e NN0HG

B101,BBOS =0.00001

3101,8906 -NeHNIBC

B101,83n1 ~0.:1226

B101,R6n2 -0.(0058

B1C1,87n3 ~CeNCOLT

JQUANTITY DEFINED BY EQ. 79
byUANTITY DEFINED BY EQ. 85
QUANTITY DEFINED BY EQS. 76, 77 AND 78
dQUANTITY DEFINED PBY EQ. 81
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IABLE 12. (CONTINUED)

ORBITAL URBITAL TOTAL GEMINAL GEMINAL
INTERACTION CORRELATIONS CONTRIBUTIONS ENERGIES

CONTRIBUTOR

H1ol -0.03261

heag? +(.00099

V403 +0.0016

R3xl +0.,00044

Ay OTHERS ‘+0.00006

] -0.723096 ~Qei 3360
Kigl.B81l01l 1.35079
Klol;B2a2 -020L49

KlO’ljBBJ(Z =0.0007T8

UTHERS -0e0137

AT (KyB3) -0.00263 ~0e100263
AE -0.06954

L -B+:i5418
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1TABLE 13, CORRELATION ANALYSIS FOR BORON

CONTRIBUTOR ORBITAL® ORBITALD TOTAL GEMINALS GEMINALd
INTERACTION CORRELATIONS CONTRIBUTIONS ENERGIES

KlSi.KlSl ~21.52C53 =17.86949
K151,K252 =~}eN1268
K1S1,K3P1 -De02136
K151 -0.03405
Ky OTHERS =0.00007
K -{e034C5 -0.03402
LP1S);LPLISY =5:.173€3 -1.91269

LP151,LP252 -1.00028
LP1S1,LP3P1 =N NOUHT

LP1S1 ~-0.,00085

LPUTHERS =R NGRNG

LP =003 -C. 00084
L1P1.L1P) -2273356 -Ce 30775
K1S81,LP1S1 247463

AT{K,LP) +0,00005

K1S1,L1P1 1.,17650

AL(K,L) -3.00001

LPL1514L1P1 0.78631

AT(LPyL) 0. 000C0

TOTAL 1 De300%

ALz -0.03492

i -24.5622

BMUANTITY DEFINED Y FQ. 79
bOUANTITY DEFINED BY EQ. RS
CQUAMTITY DEFINED LY FEQSe. 76, 77 AND 78
dauUANTITY DEFINED LY EQe 81
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TABLE 14. CUORRELATION ANALYSIS FOR BH (R=2,329)
CONTRIBUTOR URBITAL® ORBITALb TOTAL GEMINAﬁ:GEMINALd
INTERACTION CORRELATIONS CONTRIBUTIONS ENERGIES

K191,Klol -22.8443 -18.230G3
Kilol,K302 -0eJi56

K10 1,K402 -0 155

K19 14K504 -QeIIGUY

K10 1,K695 ~0s Q0%

K19 L4K2n} -(}e-:138

Klod -J40260

Ky OTHERS +0.0000

K "0’0259 __0-919()
LPlo1,LP101 -5.3071 -1.4113
LPlol,yLP302 -NeCY12 '

LPlol;LP4c3 -0.G003

LP10 1,LP504 -0e 3040

LP1lO1,LP605 =N DOYO

LP1O 14LP21n1 -0e0i302 -).,0318

LP1O1

LP2u1,LPlo] -0eI352

LpP2nl,LP2x1] +0.0143

Lp2n1,0THERS +0.0C16

LP2n] -0.N142

LP ~-0.3465 -0.£329
31014810} -5,1176 ~1.6275
BlolyB202 -0.0138

Blol,B403 -Ne(N22

Blol,R504 -0.0003

Blol,B3n] =JNKT

Blol,B6n2 =06 GO0

ZQUANTITY DEFINEDR 8Y EQ. 79
QUANTITY DEFINED BY CQ. 85

d

CQUANTITY DEFINFD BY EQS. 76,
QUAMTITY NEFINED BY

81

77 AND
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TABLE 14. (CONTINUED)
CONTRIBUTOR ORBITAL ORBITAL TOTAL GEMINAL GEMINAL
INTERACTION CORRELATIONS CONTRIBUTIONS ENERGIES

310l -0.0232 ’

R202,R101 -0 e 3138

B202,0202 +0. 0001

B202,0THERS +0.NOLS

13202 ~-0.0054

i3 n] +0.0022

B -01,0263 ~-0,0146
Klol,LPIO1 2.5097

KlolsLP2 ) Qe 0037

OTHERS 0.00065

AT(K,LP) +0,0042

K101,Blol 2.1043

K101,8202 +3.0039

K191 B3nl -0,0017

UTHERS -0, 0303

AT(K,B) +0.,0021

LP1O1,B1l01 1.3861

LPIC1,B202 +0.0012

LPIO1,R3n 1 -0, 0005

LP2%1,B1lcl +2.0086

OTHERS +0,000L

AI(LPyB) +0,0095

TOTAL A1 +0.0158

Ap -0,0831

o
[

-25.,2053
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TABLE 15. ORBITAL EXPONENTS FUR THE APSG WAVE
FUNCTION UF LIH AS A FUNCTION OF R

URATTALS ORBITAL
EXPONENTS
b= 2480 R ==3.015 R = 4,00
LI-K1S 2.47566 - 2,48169 2.46973
LI-K2S 3.29233 3.29233 3,23359
LI-K2PO 4.09384 4.09184 4403473
LI=K2Pn 4,26156 4.21650 4426061
LI-K3Po 5.67795 5.68493 5.58527
LI-K3p 476716 4.73995 5.70326
LI-K3Do 5.84102 5.71936 4,95797
LI-K3Da 5465041 5.69243 5.60553
LI-K3D6 5.67957 5.67957 5.62025
LI-L28 145895 0.67828 0.63774
LI-L3$ 1.61435 1.02091 1.£7810
LI-L2PO 3. T7678 ¢.75366 0. 68099
LI-L2Px .83268 0.76258 0674672
H-1$ 1.02733 1.02951 0.54576
H-25 1.14166 1.13376 1.06624
H-2P ¢ 1.23243 1.18804 1.15064
H-2p = 1.18244 1.16849 1.C9741
H=3D x 1.47935 1.45935 1.24187
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TABLE 16. ORBITAL EXPONENTS FOR THE APSG WAVE
FUNCTION OF BH AS A FUNCTION OF R

ORBITALS ORBITAL
EXPONENTS
R = 2420 R = 24329 R = 2.7¢
B-K1S 4439679 4.44380 4. 40669
B-K2S 5.54900 5.55292 5.5539¢4
B-52pc 6. 34899 6233261 6424406
B=K?pPr 6.46035 6239500 6043341
B=-K3po 6.26168 6.2483¢ 6e26168
B=-K3Do 8.51087 B8.49277 8.51087
B-L2S 1.32414 1.35277 1l.36074
B-L2Pc In6304 1.96917 1. 93446
B=L2Px 2.05252 2.05102 2.07080
B-L3Po 2.GC4T1 2.00045 200471
B~L3Do 225177 2.24698 2425177
B-L28! 237562 2.05631 2,C7564
B-LZPg' 94839 0.91141 Ue 82329
P-L2Px! 1.34093 1.33187 1.37277
H-1% 1.2%839 1.24835 1.19805
H-2S 1.97944 1.97523 1.95129
H=2P0 201'2316 2.00664 1.92821
H-2P x 1.53939 1.53634 1.38736
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TABLE 17. TRANSFORMATION MATRIX AND OCCUPATION
CUEFFICIENTS OF LIH AT R = 2.80 BOHR
z K1lol K202 K493 K804 K9as
LI-K1S 1.18865 =~3.33789 0.06323 -0.02812 (€.03649
LI-K2S ~£.19514 3.56649 -0.07668 0.07026 ~0.07005
LI=-KZP =0.G0090 001851 0.70030 024397 -8.40883
LI-K3P =0.,00273 0.03105 033392 -0.23861 8.37766
LI-K30 =-0.00003 0.00080 -0.00815 1.00109 0.02647
LI-L2S 0.71174 -0.07449 -N.28448 -0.13150 (.15133
LI=L2P =02.41326 =0.17197 -0.42840 0.08642 0.22133
LI-L3S =2.02759 -0.03401 0,03113 ©e23762 -0.13305
H=1S  =us02156 U.0LU90 =9.09579 002304 0.03818
H=28% 200464 007691 0.45137 =0.16651 =0.08624
He=2P Be0OUB2 =D)aNBY5B2 =i,)u259 =0.0B43T7 0.11466
Uelie 1099886 ~0.02418 =0.02146 —0.07375 =C0.N0144
z Blol R202 B403 B504 5805 B9g6
LI-K1S =0.11658 =3.728574 -0.09512 0.17%185 =(.65408 =-0.42734
LI=-K2S ©.00252 0.03620 -0.13743 -0.36234 1.36951 1.68222
LI-K2P D.00330 2.01817 0.00158 =0.00936 -0.07522 =NeG27:46
LI=K3P U.00370 =0.00951 =0.00247 -0.00651 ©.03200 2.02631
LI=K3D 2.N0059 C.00310 0N.01018 000236 =(.00241 -0.C0253
LI=L25  J.12100 ©.560315 =0.13005 =1.25685 =8.46795 2.99655
LI-L2P %.20803 0.64575 0.00259 -0.98582 0C.72412 1.51056
LI=L3S N.19518 050637 —0.11264 —=0.63428 9.L0TC57 ~0.56429
H=-18 Ce6T7544 ~1.52485 0.,31008 —-1.98889 0.13237 1.19595%
H=25 JeN2071  Ue3996T7 =0e23986 3.90978 =1.17245 -1.44968
H=-2P 0.03035 —0.0T791  1.05691 0.62210 =0.44G1l7 -D.4168
el o 7098633 =0.11548 =(.05557 =0.01250 =0.00144 -0, 00677
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TABLE 17. (CONTINUED)

it K3nl KSn2 K73 B3nl B6n2 R7n3

LI-K2P (1455364 ~3.43770 0.03509 -0.00533 0.03988 ©.14147
LI=K3P 3.466084 3,49663 -0.08900 0.71552 -0.07618 -0.38372
LI-K3D =0.00439 0.02815 1.00126 0.00133 ~0.00130 0.92342
LI-L2P =0.00829 ~0.14945 (.02191 0.02350 C(.01280 1.34670
H=2P =0, (06855 0.00387 =0.03176 0497117 -0.18401 -1.64554
H=3D -1 08703 =G,N5299 -0,05056 0.16981 ©.98393 -1.53343

UeCa ~0. 02384 =0.02380 =-0.00387 -0.07188 -G.01006 ~0.00451

A K6bd1

LI-K3D 1.00000

OOCO -0000385
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TABLE 18. TRANSFORMATIUN MATRIX AND OCCUPATION
COEFFICIENTS OF LIH AT R = 4,00 BOHR
z K191 K202 K403 K804 K905’
LI-K1S 1.18465 —3.28950 0.01258 -0.03577 0.06702
LI-K25 -019557 3.,49022 -0,01314 0.,04505 -0.07408
LI-K2P ©.D0110 =-V.13295 0,68727 (.24911 -8.30391
LI=K3P =0.00597 0.13446 0.33603 -0.,22036 8.28907
LI=K30D =2,00031 =0.00848 ~0.03151 0.99921 0.02961
LI-L2S ©0.00254 0.21535 =0.07575 ~0.03242 0.10863
LI-L2P =0.00195 =0.25895 =N.35766 0.06198 0.23558
LI-L3S —0.00157 =0.41987 -0.07914 0Q.10747 -0.04166
H-18 001717 -N.05792 -0.10728 0.04073 (©.02885
H-28 CLODDBD  11.25B885 (.35588 -0.,12450 =-U.1506])
H=2P 000104 D.NS58T3  0,06646 -N0.C8226 0.0084C
OeCo 5.99896 ~0.02432 =0.02201 ~0.00429 -C.00151
by niol R202 8403 B504 R8OS B90 &
LI-K1S -De12548 =0.09985 =9,09111 0.04068 ~-0.32891 -1,41820
LI-K2S 2.01139 ~0.92819 0.03890 —0.03470 (0.50987 0.51620
LI-K2P 0.00478 =0.02°31 0e04054 0406369 -C.07379 -0.04275
LI-K2P =u.0N113 0.02005 =0.02699 -0.75892 0(.07530 9.06327
LI-K3D Je00N03 =N NE696 0.02345 0.01353 =3,01C68 ~-N, 01136
LI-L2S 3.19727 0452979 ~0.29174 -1.11411 -4.87423 0,99335
LI=L2P “e1BB32 U 47172 —0614564 —Ve69574 (42458 1.34194
LI-L35 .18008 1N.32581 -0.07074 -0.18347 5.14225 -.83254
H-18 1069968 =1.42201 0.46287 —-2.07363 C.04065 .,29356
H-28 1.0003) 460736 =0.30754 3427378 —=0.39708 -1.13927
H=2P Jel'1332 0.03376 1.05236 051782 -0.51027 -0.32000
1eCa 1e9T9TT =0.16663 ~0,05405 -0.01315 -0.00307 -C.00123
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TABLE 18. (CONTINUED)

1l K3r 1l K5n2 K7n3 B3xl 5602 B7n3

LI=-K2P .97575 =T.49013 0.01567 0.02235 -0.24865 0.06881
LI-K3P (e03100 753463 —-0.00995 -0.02101 0.26219 ~0.22993
LI-K3D =-yeNN65) 0.00141 1.00017 0.00021 (.00113 0.00213
LI-L2P =-0.C4131 (.11471 0.00835 0.113C06 =0.25340 1.13327
H=2P ~Ue02215 =7.01960 ~0.00887 1492961 -0.13096 -0.50775
H=30 ~(0e00458 —0eT4060 002097 0419642 1.04667 ~C.22680

JeCoe —Ue (2145 -0.00165 ~C.00391 -0.3567C0 -0.00895 -0.00497

A K66 1

LI-K3D 1.0000%

O.Ce -¢. 00391
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FABLE 19. TRANSFURMATION MATRIX AND QCCUPATION
COEFFICIENTS OF BH AT R = 2.20 BOHR

z Klol K3oz K4¢3 K504 K65
B=-K15% 1412539 0435303 -3.00802 0.04284 -0.13420
B=K25 =0.13121 —-0G.41226 3.79935 -0.05686 (.1855C
[=K2P =C.00024 1.15914 0.16509 0.00320 ~2.3817%
i»~K3P “ef0342 0.02796 =0.05299 ~0.06646 3.33206 "
B=K3D =-0,0003% 0.02506 0.01519 0,98585 (.,01C79
B=L2S =0.01312 -2.07992 1.27858 0.08272 -C.15603
B=L2P =0.00160 —-0.88767 -0.01733 0.10098 -1.67504
B~L3P “ea00373 NeU3691 -0.08552 0.02275 -0.06757
R-L30 {1.00155 -1.N2493 ~0.03675 0.06588 -C.05021
H=L2S' 000312 0:07441 =1.93413 (.04279 =0.18995
B=L2P'  0.00125 1038422 J3.08598 0.,02074 0,59368
H~18§ - O0UDE =0a20184 =0.28207 0411598 ~U.23997
H=28 -U.010365 (0.28719 90.25284 -0.26722 .59818
H=2P -0.00128 0.07323 "0,07339 ~-G.12209 439672
UeCo 099972 -04111179 -0.00951 -0.00271 -0.00263

z LPlol Lp3@2 LP403 LPS5C 4 LP&6CS
B=-K13 =0.1984% 0(0.87892 0.18654 0.19607 0.06931
B=-K2S -0e01454 (433327 =0e.24740 -0.23372 ~0.08690
B=K2P =0.00311 (0.02782 =0.06571 -0.08167 -1.03365
A~K3P (Ge1286 (o011 90 =0.03474 0.57271 3.26897
B-~K3h eN0041 -0e00648 002669 -0.36D75 0.03899
B=-L25 CeD699C -24:°5216 =0.31788 1.46227 C.32191
R=L2P ="a131%7 -0.13056 1446897 -2.18257 -7.35229
B=L3p {eM9521 V12266 1Me13732 3.44997 B8.46228
B=-L3N ={e00468 0603252 0.09585 1455088 -0.05490
B=L2S'  9.00022 2.43296 D.39877 =-0.01130 0.03816
B=L2P' -1.31934 =0.12457 ~1.53360 -0,18762 ~2.36823
H=18§ -Je4123 0.045427 UC.55519 0.51897 0.23133
H=-2S JeN93T 0el5079 —-0e28460 -2.63560 ~G.T4675
H~2P 7eN3997 -0426932 -Ne61910 -1.14162 -0.30360
OuCe 497426 -0eND1518 -0.00820G ~0.00241 ~C.00C85
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I ABLE 19. (CONTINUED)

T nioy p2a2 B403 B504
B=K15 =9.05469 Gol,974 -0.30971 000349
—K25 =0.01574 0.01638 0.36179 0.07707
B=K2P  0.00326 =-0,02911 3413972 0.02192
f=K3P  0.00528 0.0L616 0614292 0.05387
B=K3H =0.00073 0.02208 -0.01337 -0.90223
B=L2S =0.07670 -0.64%537 ~0.75611 007337
N=L2P (422753 =1,48104 -0.64879 ~0.38015
H=L3P  0.72998 -0.32816 245737 0.12342
B-130 G.03131 =0.13306 0Q.13789 0.04229
HW=L25"  0.79186 =N_17186 =0.,10585 =(.37687
B=L2P"  £.32103 =0,33900 =9,72283 =-0.23941
H=-15 C.52574  1.090246 1.24609 -4.96016
H-25 1.96723  £.25606 =0.45136 5434424
H=-2P NeN3172 =0.02993 1.05382 $.24253

1! K2rl LP2xnl B3 xl Bonl
R=K2P  1.N18834 =.01166 -0.01993 -5.58868
h=L2P =7.23314 0,06835 0,28312 2.71794
B=L2P' =3.07072 =1.09094 =0.66401 -2.33G63
H-2p 0e53039 0.,98211 1.12958 0.14751
DoCo ""..;001351 "'0-15891 "0003695 “0.00077
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TABLE 20'e  TRANSFORMATIUN MATRIX AND OCCUPATIUN
COEFFICIENTS UF BH AT R = 2.70 BOHR
z K10l K30z K403 K504 K695
h=-K18 1.12003 0.34452 -2.99951 0.43370 -0.10712
3=K285 =01e12983 =0.41435 3.79575 =0.04643 (.14348
R=K2P =0,00121 1.20077 G.17819 =0.00020 ~2.47328
B3-K3p (e0CD190 =D.00656 -0.06665 —-0.05535 3.43598
B=K3D C.00025 0.72056 0.00537 0.98894 ~0.00456
B-L2S =0.00020 =0.26203 1.47460 0.04951 ~0.02836
h=-L2P 0e00TLT =3.89489 =0.04775 Ce07969 -1.68507
B-L3P -0.0097) 0.19408 0.05877 -0.00894 (.28367
B-L3D =0.00198 2.00857 0.02166 0.04119 0.05605
R=L25' ©".0R367 0.13248 =2.03499 0.01367 =-0.08629
B-L2P'  0.00239 0.29310 0.07694 0.01735 (.44503
H-18S 0.00105 =0.23394 -0.36265 0.12498 ~0.32116
H-25 0.00503 0.22255 0Q0.18019 -0.20472 0.37875
i=2p UeN0253 =Ne07133 =5.06658 =0.008025 (1.,22775
NeCoe N.99970 =0.01176 -0.00950 -N.002270 ~0.00266
z LP1O1 LP302 LP40o3 LP504 LP605

P=K1S =0422175 =0.87368 0.16325 0.10035 0.N4375
R=K2S =0.01142 3.30982 -0.24183 -0.19252 -0.04953
P=K2P =0.00312 0.01612 -0.06956 -0.12544 -1.05865
B=K3P =2.01562 N.01098 -0.089T74 0.66997 3.18147
B-K3L Ce0ND135 ~0.010347 -0.02815 =2.31865 0.04448
B=L2S Je9BHBIS =2.22691 ~G.32825 1.09944 (.28221
N=L2P =7.03877 =D.12732 1.58645 -2.19408 -6.79887
B=L3P =NaN9972 0.U6371 -0.37635 2.72018 T.22551
B=L3D =..02665 =0.00082 0.07104 1.24532 -0.10551
B=L2S' =4.02731 2.56232 0034541 -0.39571 -0.06742
B=L2P' =0e19908 =0.03584 -1414340 ~(C.08508 ~1.80324
H-18 J.0TOL8 1013095 (0.58861 0.72848 (.37844
H-2S ~0e73107 0615461 0620397 -1.9647J -0.65498
H=-2P Ne(i1184 =-0e12066 -0.41375 -0.88106 ~U.39229
eCo ("e97352 =0.01623 -0.00833 -0.02249 ~0.00086



120

TABLE 20. (CONTINUED)

) Blol B202 B4 a3 B 4
B=K15 ~7.03943 0.,11102 -0.28070 0.06688
B=-K2S =2.01000 =0e01692 3431059 =0.004G1
B-K2p D.00644 * 0 U1657 HDel7l42 0.00954
B=K3P  .00801 ~0.01393 0.03365 -0.91525
B-K30D —0.00407 ~0.01321 -0.02448 -0.00306
B=L2S Ge0N813 ={e647352 =0.65350 0.45779
B=L2P  7.16570 =0.57727 -0.36406 -0.12501
n-L3p 1414520 0611631 033213 0.03879
B-L30D 0206247 0.08917 0424094 0.07677
B=L28" 03662 =0.03626 0.14514 =0.30497
B=L2P'  D,.31544 =0.50323 =0.62824 0,(6840
H-15 Pe52829 0.98553 0.45764 =5.,40740
H-25 J.03139 G.00271 0.00443 5.32834
H=2P (eN0B802 =1416217 093649 =-0.08970
UeCo 1499171 =0.11412 =0.02314 -0.00410

1 K2l LP2nl B3nl Béxl
B=K2P 109293 =0.01(56 =0.00945 ~0.61233
B=L2P =0.24366 0.08247 0.16493 2.84440)
B=L2P' =0.06373 ~1.09086 =0.4479) =-2.44954
H-2p 0.02872 0.06393 1.G7454 05.22017
NeCe  =NeN1346 ~Ue16111 -0.03833 -0,00047




TABLE 21.

ENERGY RUANTITIES OF LIH AS FUNCTIONS OF R

R -E -E(PNO) —-€(K) —-€(B) I{K,8)
26037 BeD4374 797614 6053413 1.17042 1.493734%
2802 8.05155 T.98277 655896 1lel4441 1.419561
3.0C0 B8.C5415 7.98470 6.5818C 1.11945 1.352SC
3.015 B8.05418 7.98469 6.58342 1.11763 1.34816
3.05% 8.05421 7.98467 6.58656 1113249 1.33776
3,130 8405411 7.98449 06659097 1l.1276% 1.32323
3420 8.05342 7.98368 6.59545 1.09622 1.29525
3.400 8405059 T.98064 6661519 1.C7439 1.24336
3,600 Be04642 Te97631 6462937 1.55398 1.19641
4.000 8.03573 7.96533 6465350 1.01711 1.115C9
5.0900G 2.00518 7.92706 6.68182 0.93971 92.98371
T.008 797037 7.8B5833 6.67639 0.84722 (C.B7533

® T7.96343 T.93194 6.64906 0419591 $.62446

1zl



TABLE 22. ENZRGY QUANTITIES OF BH AS FUNCTIONS GF R
R -E —-£(PNO) -€(K) -€{8) -€(LP) I(Ky3) T(KsLP) T(3yLP)
1.800 25.1259 25.0514 18B.1744 1.3982 1.9294% 2448649 2.453% 1.4829
2203 25.1823 25.1C35 18.2079 1.4143 1.8153 2.3223 2.4722 1.45G3
2.205 25.2034 25.1213 18.2348 1.4317 1.7C77 2.1333 2.4958 1.43173
2300 25.2054 25.1224 18.2468 l.4413 l.6567 241247 2.5G94 1.40725
2329 25.28053 25.1223 18.2499 le4442 1.6422 2»12H64 2.5132 1.35856
2.350 25.2053 25.1221 18.2512 1e4452 1.6335 243961 2.5152 1.39138
2400 25.2355% 25.1214 18.2536 1.4476 l.613L 2.3719 245192 1.3828
2.600 25.1974 25.1127 18.26305 1.45756 1.535¢ 1.3798& 2.5372 1.34738
3.530 25.1:61 25.3177 18.2772 1.4455 1.2736 1.7538 2.5481 1.2373
44500 25.0236 24.9283 18.2888 l1.4441 1.0834 1.5964 245692 1.1427
® 25.0622 25.3200 17.9034 1.9136 0.3C78 1.1763 2.4747 0.7853

14!



TABLE 23.

OCCUPATION NUMBERS COF

LIH AS FUNCTIONS OF

-

R Klol K201 K3 n2 K403 3101 3202 833nl 4403
2.6C7 0.99778 D.05110 300056 G.00046 $.97466 <Z.Cll64 $oC1032 (©.30223
2.8C7 0699772 De07114 J3.00058 J.00046 0.97284 (.11334 $.01933 ©£.30379
3.000 0.99766 D.07116 0.05061 C.00947 G.97123 3.35315¢C G.01311 $.060323
34200 Ge99770 0.0C112 2.00061 0347 Ce96954 05.01690 Ga06G98B2 <Co30G328
345CU 7499778 V.Du1"4 GeC0061 0e000AT D.9665¢6 C.02027 2485954 0.006321
440635 7499792 «J35392 QJ.C0T59 (00048 095995 T.032777 C.005893 $.73292
5060 0.99792 0 0092 G.00058 O0.00048 Ue93244 L.05914 S.00623 0.200183
T«002 299794 $.00092 D.00058 0.00048 079875 2.20672 0.08203 0.00034

® Ce99742 D.00117 D.G0070 C.00059 <C.50830 3.50020 C.t Gal

134



TABLE 24%. OCCUPATION NUMBERS UF BH AS FUMCTIONS GF

R Klol K2nl LPlol LP2nl 51lc1l B202 23Inl
2,000 599942 U.00935 (955064 e54912 €.99253 .00410 C.038279
2.200 0.99945 J.00037 0.94918 0.05C50 U.98935 <.00738 C.0L0273
2.300 399938 Ge00237 J.94858 2.05107 C.9879% 9,D0891 G.3L273
2.400 Ge99933 G03237 0.94834 0.05128 G.98653 ©£.012256 L0273
2695 D.99943 T.08037 J.94799 C05166 (.98424 .01237 C.CD286
3,000 299940 0.00236 Go94633 0605335 35.98121 J.701544 S.052271
3500 1e99947 ($.00C836 Ge94363 0.056C0 2.97828 J.01913 £.357237
4,500 J499942 0.00036 0093962 0695001 (96865 £.02931 ".52177

® e 99918  D.00336 C$.9999C 003005 050603 D.58333  Tel

el



TA

BLE 25. DUNHAM® PULYNOMIAL APPRCXIMATION FUR THE

POTENTIAL CURYE OF LIH

DEGREE E(Ry) E(Rj) NUMB R MIn a a a
0 1 2
OF R
PUINTS

] ~8,N05261(285) —8.05221({3.30) 10 3e%342 33277 -—2.2341 12,797
5 —~BeD5317(275) —84i34965(3e45) 15 3.u43 04,3473 -2.414". 5.1934
5 —8e74631(2.65) —~8e4G4542(3.67) 20 3eU42 TYe3441l ~2.27GP 3.859%
5 -Be02765(2.40) —8.C2832(4.25) 16 3,042 90.342€6 —2.4489 4.3316
6 ~8.32765(2e87}) —Be0223214.25) 16 3745 0.3393 -2,2189 4,211
7 ~8e02765(264C) —8.02832(4.25) 16 3.945 0.3267 =-2.254 4,7C9
a
bREF. {67)

CRAWFORD AND JORGENSEN REF. (27)

szl
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ABLE 26. SPECTRDSCOPIC CONSTANTS CALCULATED
FROM APSG POTUNTIAL CURVES
LIH
CONSTANT CALCULATED EXVERIMENT? PERCENT
DEYIATION
bg  1/CM 7.341 7.513 ~1.75
me UM 1483 1415.¢ 545
wx, 1/CH 24445 23,28 5.4
> © 1/CH .2849 9.213 33.7
e © A le61ll 1.595 (eG0
H
CUNSTANT CALCULATED EXPERIMENT® PERCEMT
DEVIATION
Be  1/CH 12.085 12.016 Ue57
We ™ L/ 2923 236745 2347
Wexe 1/CM 45440 (49)
Qe 1eCM 3e4887 0.408 19.77
Re A 1.23° 1.236 ~C.49
DCRAWFURD AND JORGENSEN REF. (27)
BAUERy FT  AL. REF. (29)
CESTIMATIFD FROM woxe/We=0.6 0 /B, SEE NTF. (29)
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TABLE 27. COMPUTATIONbTIME FOR ALL EXCHANGE INTEGRALS ARISING FROM A GIVEN
BASES SET3+

BASIS NO. OF TOTAL TOTAL

SET AQ'S PER NO. OF TIME IN

CENTER INTEGRALS MINUTES
Is ] ] - 0,05
+25 2 10 0,05
+2pc 3 Ls 0.08
+2pn L 136 0.10
+2pst 5 325 0,10
+3s 6 666 0.4
+3po 7 1225 0.21
+3px 8 2080 0.32
+3pn 9 332] 0.32
+3do 10 . 5050 0.42
+3dn 11 7381 0.56
+3dn 12 10440 0.63
+3db 13 14365 0.76
+3d5 W 19300 0.89

aQa # Cp for all orbitals, but (& = (x, £§ = (6

bTimes quoted apply to an IBM 360/65
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APPENDIX B
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Contour maps for all the natural orbitals which form the bases of the
APSG wave functions determined for Li, LiH, B, and BH are presented. The

LiH and BH contour maps are chosen at the equiiibrium distance of 3.015 and

2.329 bohr respectively. The contour maps are drawn to the same scale in

units of R-3/2. -

Contours which are positive are drawn with solid lines, and contours

which are negative are drawn with dashed lines. The nodes are drawn with

dotted lines. Contours, C, are drawn in increments of 0.04 bahf'slz in the

intervala

-Oa"} S C _<- O.LI’

Thus in a region enclosed by a node the contour nearest it has a value of

|o.oul bohr~3/2, The nuclei are located at the intersections of the straight

lines which would connect the vertical tick marks and the horizontal tick

marks.

. -3/2
¥The contour maps of Diagrams 1-6 are drawn in increments of 0.02 bohr 3/
in an interval -0,2 < C<0,2.
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