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I. SEPARATED PAIR APPROXIMATION FOR 

LITHIUM HYDRIDE AND BORON HYDRIDE 
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INTRODUCTION 

Well before the formulation of quantum mechanics and its application 

to problems of atomic and molecular structure^ the importance of the elec

tron pair had already been recognized. The Ideas which were developed 

after the discovery of the electron culminated In the work of G. N. Lewis 

who pointed out not only the central role of the shared electron pair in 

bonding but also that of unshared pairs (l), Langmuir and others continued 

the development of these ideas and showed that they could be used to 

explain a large variety of chemical facts (2,3). With the development of 

quantum mechanics It became possible to go considerably further and to 

elucidate the detailed structure of electron pairs. The combination of 

these ideas with the insights provided by quantum mechanics resulted In 

rapid strides in gaining a qualitative understanding of atomic and molecu

lar structure. 

In contrast, the attempts to obtain quantitative results along with 

qualitative explanations encountered insuperable mathematical and computa

tional difficulties which did not become amenable to solution until the 

development of the high-speed digital computer. The recent advances In 

computer technology have led to a corresponding Increase in the number of 

quantitative molecular calculations. 

The main thrust of quantitative ab-initio investigations has been in 

the development and refinement of the self-consistent independent particle 

model as formulated by Hartree and Fock (4-6). By use of Roothaan's 

expansion procedure (7), nearly exact Hartree-Fock wave functions are 

becoming available, especially for atoms and diatomic molecules (8-11). 
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These Investigations make it clear that, while the Hartree-Fock wave 

functions are quite capable of yielding satisfactory predictions of one-

electron properties, their failure to account for the Individual electron 

correlations makes their use for chemical purposes dependent on developing 

schemes which yield reliable predictions of the correlation effects. For 

this reason ab-initio determinations of wave functions beyond the Hartree-

Fock level have become essential. 

The most common avenue of attack for constructing correlated wave 

functions has been the configuration interaction (CI) technique, where the 

wave function is built up from a linear combination of configurations 

(Slater determinants, antisymmetrized products), Y., namely 

$ = 5 C. T; 

where the C. are determined variationaly. This formulation Is a restate

ment of the general existence theorem for infinite expansions of antisym

metric functions In Hilbert Space. In order to fill such a framework with 

physical content, it Is necessary to find a-priori ways to anticipate 

which of the many configurations that can be constructed will yield sub

stantial contributions to the total energy. The first of these antisym-

metrized products, is usually taken to be the Hartree-Fock wave 

function. It Is therefore essential to look for formulations of the higher 

terms which will yield physically significant information. 

As a possible step in this direction it seems appealing to Incorporate 

into the rigorous framework qualitative and intuitive chemical concepts, 

which would thus be preserved throughout the quantum mechanical formula

tion, and, at the same time, be critically tested. The concept of 
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electron pairs is of considerable importance in chemistry and also simple 

enough to maintain in the quantum mechanical treatment. 

The formulation of pair theory goes back to the work of Hurley (12), 

Lennard-Jones and Pop le (13) who proposed the use of functions of the form 

kt 

In addition, they introduced the "strong orthogonality" condition 

JdV, Y^(l,2) r(l,3) = 0 IX y V 

so that the resulting formulas would be tractable. With this additional 

constraint, the functions, are called separated pair functions. These 

authors further simplified the separated pair functions by expanding them 

in terms of their natural orbitals (l4), viz.. 

Since its original Introduction several Investigations have been 

carried out using the separated pair approximation. Parks and Parr (15) 

suggested several alternative schemes for minimizing the energy to obtain 

the optimal wave function. The separated pair approximation was applied 

to LIH by Cslzmadia, Sutcllffe and Barnett (l6), and by Ebbing and 

Henderson (I?) who also transformed the expansions to the natural form and 

compared their wave function to the CI wave function calculated earlier by 

Ebbing (18). McWeeny and Ohno (19) applied the approximation to the water 

molecule, and McWeeny and Sutcllffe to Be (20). In addition, Kutzelnigg 

(21) has compared the separated pair approximation to a different pair 

approximation suggested by Coleman (22), namely an ant 1 symmetrized product 
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of Identical pair functions. Kutzelnigg concluded that the first and 

second order density matrices of the separated pair wave function of Be 

conformed to the predicted properties of the density matrices, while the 

antisymmetrized product of identical pair functions did not. In all these 

cases, various simplifications and truncated basis expansions limited the 

effectiveness of the separated pair approximation rather drastically and 

made it impossible to determine its intrinsic efficacy. 

The first rigorous application, without simplifying assumptions and 

using extended basis sets, was,done by Miller (23) and Ruedenberg (24) 

(hereafter referred to as MR) on Be and the Isoelectronic first row ions. 

They uniformly recovered about 90% of the correlation energy with their 

best wave functions. The considerable success enjoyed by the separated 

pair approximation in that investigation suggests its application to more 

complicated systems. It is of particular Interest whether the separated 

pair approximation will be equally successful in atomic and diatomic 

systems with more than four electrons. 

To this end the separated pair approximation has been applied to LIH, 

BH, NH and their respective separated atoms. The determination of the 

separated pair wave functions for the first two hydrides, LIH and BH, and 

their separated atoms is the subject of the present investigation. The 

separated pair wave functions for N and NH have been obtained by D. Silver 

(25). 

Lithium hydride is well known. Its properties have been accurately 

determined and provide an excellent basis of comparison for theoretically 

calculated properties. The spectra of LIH have been thoroughly investi

gated by Crawford and Jorgensen (26,27). 
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Boron hydride, on the other hand, is considerably less well known, 

and many of its properties have not been obtained experimentally. Its 

spectra were first Investigated by Lochte-Holtgreven and Vleagel (28) who 

produced it from reacting boron trichloride with hydrogen. More recently, 

Bauer, Herzberg and Johns (29) have investigated the spectra of BH. They 

proposed the reactions 

HjBCO + hv BH + Hg* + CO 

HgBCO + hv ^ BH + Hp + CO* 

for its formation from borlne carbonyl, where * indicates vibrational 

excitation. Boron hydride has also been detected in sun spot spectra by 

Babcock (30) but not in solar disk spectra. 

The present investigation and that conducted on NH indicate that the 

separated pair approximation has only limited applicability in systems 

with more than four electrons. In boron, the lack of inter-pair correla

tions and the strong orthogonality constraint proved to be especially 

severe. On the other hand, the form of the wave function Is particularly 

amenable to analysis, and it is readily possible to isolate particular 

aspects of electronic structure out of the total wave function. It may be 

that the relaxation of the strong orthogonality constraint could, in 

certain cases, enlarge the applicability of the general pair approximation. 
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GLOSSARY OF ABBREVIATIONS 

APS G AntÎsymmetrized Product of Separated Geminals 

Cl Configuration Interaction 

Cl-NO Configuration Interaction-Natural Orbital 

HF-SCF Hartree-Fock-Self-ConsIstent-Fleld 

LP Lone Pair 

NO Natural Orbital 

PNO Principal Natural Orbital 

SCF Sel f "Cons 1 stenf'Fiel d 

SNO Secondary Natural Orbital 

SPA Separated Pair Approximation 

STAO Slater Type Atomic Orbital 

VB-CI Valence Bond-Configuration Interaction 
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VARIATIONAL APPROACH TO THE SEPARATED PAIR APPROXIMATION 

Wave Function, Density Matrices, Natural Orbitals 

In the pair approximation the wave function for an N = 2n electron 

system may be written as an antisymmetrized product of pair functions 

c a l  l e d  g e m i n a l s  ( 3 I )  

5(1,2,...,N) =^n Y (2,1-1, 2|.i) . (1) 
|1=1 r 

This formulation can also be adopted for a (2n-l)=N electron system If 

^N°°^N interpreted as a spin orbital. The spin geminals are assumed to 

be antisymmetric in their two coordinates and is a partial antisymme-

trizer which acts on the electron coordinates between different space-spin 

products. 

Since the geminals are two electron functions, they may be factored 

into the product of a space part, A, and a spin part, 8, 

Y|j^(l,2) = A^(l,2) yi,2) . (2) 

The space geminals, A , can be expanded in terms of their natural orbitals 
1^ 

A^(l) = 0^(1) N =(2n-l) 

(3) 

where the «5 . are mutually orthogonal and the C . are the occupation coef-
|j.i p.' 

ficients; which are real (32,33) if 0^ is a singlet. As a consequence of 

Eq, 2 the spin factors can be integrated out in the formulas for the energy 

and density matrices. 
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It ts possible to derive expressions for the energy and the first and 

second order density matrices without any further assumptions. Kbwever; the 

equations become very complex (20,34-36) If one assumes only the weak 

orthogonality condition 

;<)», JdVj A^(l,2) A*(l.2) . . (4) 

A significant simplification Is achieved by introducing the strong ortho

gonality condition of Hurley, Lennard-Jones and Pople (13), to wit 

A*(l',2) . - 0 . (5) 

Such wave functions are called Ant I symmetrized Products of Separated 

Geminals (APSG), and form the basis of the present Investigation. Aral (37) 

and more generally LSwdIn (38) have shown that the strong orthogonality 

conditions are equivalent to the assumption that the natural orbitals of 

different geminals are mutually orthogonal. I.e., 

X"" "vj = V 'iJ • 

In order to formulate expressions for the density matrices, use is 

made of McWeeny's (39,40) relations between the first and second order 

density matrices of group wave functions and the first and second order 

density matrices associated with the Individual groups. Let 

- "k fd*: Ak(',2) 

- V (7.) 

«Ji(l,2: l',2') - A^(l,2) Ajl(l',2') (7b) 
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be the first and second order density matrices for the p/th geminal or 

orbital J where 

t2 if jj. is a geminal 

1 if ^ is an orbital. 

Then the first order density matrix of the total wave function, of Eq. 

is 

= S p (1,1') (8) 
|i 

and the second order density matrix of § becomes 

* ( 1 , 2 ;  I ' , 2 ' )  =  s  r t  ( 1 , 2 ;  l ' , 2 ' )  

^ ^ (9) 

+ 2 (p, (1,1') pJ2,2') - ip,,(),2') p^(2,l')}. 
|i,v M- V £ [X. V 

(|Vv) 

Eq. 8 shows that the natural orbitals of the geminals are the natural 

orbitals of the total wave function. 

Eq. 6 suggests (38) that the natural orbitals are conveniently con

structed by an isometric transformation, T, 

^ I (10) 
from a suitable orthonormal basis set, 

-»or , or or v 
X = (x, , %2 ; ' ' ' ) ; (II) 

and this procedure is adopted here. 
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Total Energy and Geminal Energy 

The non-relatîvîstic Hamilton!an for an N-electron system in atomic 

units (1,0 hartree = 27.2097 e.v.; 1.0 bohr = 0.529172 A), assuming the 

Born-Oppenheimer approximation (4l), is 

with 

= - 1 ' ? - g  v â !  ( ' 3 )  

where the labels i, j, . . , indicate electron coordinates, the labels a, 

P, . . . indicate nuclear coordinates, and is the charge on nucleus Ct. 

The electronic energy for singlet and doublet states in the APSG 

approximation can be obtained from Eqs. 8 and 9; and becomes 

E = E E(ii) + S l(|i,v) (14) 
|i y,<v 

with 

eW = Z C^. E(|ii,nj) (15) 

and 

l(|X,v) = Z C^. C^. I0ii,vj) (17) 

where the definitions 

(d^|h|dj) = JdVj «{'/(I) h(l) «îj(l) (19) 
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[iSidjU/,] = fdV, fdV; (I) tliZ) d,(2)/r,2 (20) 

are used. Eq. 14 shows that the total electronic energy can be considered 

as the sum of intraqemlnal contributions, E{ji), and intergeminal contri

butions, l(p,,v). 

The geminal energy 

e = E(ji) + S l{|i,v) (21) 

represents the energy of one geminal in the context of the whole systenu 

The total energy may also be written as 

E = E 6 - Z lOi,v) . (22) 
|i M- p,<v 

Variational Equations 

Two interdependent sets of variational equations may be obtained for 

the APSG wave function. The first of these requires that the energy be 

stationary for variations of the occupation coefficients and results in a 

set of coupled eigenvalue equations (42,43) 

^  :  Q . j  ~  Q . j  '  ~  ,  , ,  [ J ,  =  1 , 2 , .  .  . , n  ( 2 3 )  
j 'J pj i-k P"' 

where . . 

H^j = E(|ii,w) + 6.j Kni) (24) 

and 

|(|ii) = Z S cj l(}jLi,vj) . (25) 
V (î'p.) j J 

The weighted sum of the l(|xi), namely 
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S C ^ I ( n i ) =  S  I W  
Î vW 

(26) 

represents the total interaction energy of the [I'th gemina! with all the 

other geniinals. 

Making the energy stationary for variations of the natural orbltals 

yields the second set of variational equations. These are a set of coupled 

integro-differential equations which have been derived by Kutzelnigg (42). 

If the natural orbital s are obtained from an orthonormal basis by an iso

metric transformation, J, as in Eq, 10, variations of the natural orbltals 

are replaced by variations of the elements of T, and this yields the 

expression 

are Lagrangian multipliers introduced to guarantee the orthogonality 

constraints 

(27) 

where 

(28) 

and furthermore 

(29) 

with 

h^k' = (k|h|k') , (30) 
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'kk' = V') j, [kllk't'] C^) (3.) 

^k, = 2 fECkk'l^'] - [kt|k'4']) 
W,' 

(32) 

V W ^vj • 

If both sides of Eq, 27 are multiplied by T. . and summed over k and then 
Ki[il 

over i, one obtains the relation 

V ^ V" Vi VJ F-'ixi 'WKi ° V ̂  Vi,^t 

as the coupling equation between the diagonal elements of \ and the geminal 

energies. 

Determination of Wave Function 

Variation of parameters 

Three sets of interdependent parameters must be determined to find the 

optimal form of the APSG wave function. The occupation coefficients are 

found by solving Eq. 23. The orbital exponents associated with the basis 

functions, are determined by varying them until the energy is minimal. 

The elements of the rotation matrix J could be found from Eq. 27; however, 

because of its complex nature this method is replaced by the alternative 

of minimizing the total energy with respect to the elements of T. 

This optimization is accomplished by parametrizing J In terms of 

M(M-l)/2 parameters 7^, i.e., 

= Z' (Y,j ^2' • * • ' %l(M-l)/2^ (34) 
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where M is the order of T. These parameters are varied until the energy is 

minimized. They represent angles for two by two rotations and are limited 

to the domain » The orthogonal matrix T of degree n is obtained (44) 

as the n'th step in a recursive sequence of orthogonal matrices i.e., 

j= T^^). The n'th matrix is obtained from the (n-l)'st matrix T^^ 

by the following set of recursive steps 

^jk' ' 'jk' •Vjn - '•jk Yjn (35) 

rjïl.k - 'jk' Tjn + 'jk' Tjn 

where for fixed k, one advances from j = I to j = n using the definitions 

T(n-l) 0 

(37) 

rîk = - Gkn' Tnn = '/= « ' l'" = ' • (38) 

By separating the variation of the orbital exponents and the rotation 

matrix parameters it is not necessary to recompute the atomic integrals 

when the rotation matrix is being optimized. The entire procedure becomes 

an iterative scheme which is illustrated in Fig. I. Each block is essen

tially independent, and its output serves as input for the next. 

Introduction of atomic orbital basis 

The orthogonal basis functions, x°''j are generated from a non-orthogonal 

basis set by the symmetric transformation 

r  =  Î  i ' "  -  ( 3 9 )  

where S is the overlap matrix for the x's. Introducing Eq, 39 into Eq. 10, 
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the natural basis can be expanded in the non-orthogonal basis set as 

where 

=  X  D  

D = S - ' ^ ' T  

(40) 

(41) 

is the transformation which carries the non-orthogonal basis % Into the 

natural basis 

When a new basis function is added to a previous set of M basis func

tions, it Is Important to eonstFuet the initial guess in the (H + 1)-

dimensional Function space in such a way that it is at least as good as the 

optimal wave function obtained previously in the M-dimensional space. The 

proper form of D for this to be the case is 

.M+1 

12 
D 
n l,M+l \ 
II 

(42) 

I / 

\ Vi,i • • • ''M+1,2 • • • Vi,i • • • Vl,M+l / 

where D°j = [(S°) the k,j'th element of the old wave function 

and is of the order (M+l). This form guarantees that the M natural 

orbi tals 

(j ¥ i) (43) 
'j * a ** " 0%,;) OqJ 

are identical with the old natural orbitals. Since the (M+l)'st of the new 

natural orbitals, viz., 

M+l 

= j, "a, (44) 
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is required to be orthogonal to those of Eq. 43, it is completely deter

mined, and its coefficients are 

= (G f " 
(45) 

where 

wi th 

whence 

*a; = % % ogp SiY ' (G'P/Yfl) (46) 

Sap = Xp (47) 

SQP = , if Of! and p/i . (48) 

The relation 4$ can be derived by a Schmidt-Orthogonalization of the form 

= const. Ixj - S W_|x:) 
' ' a(ifi) " 

and is related to a method suggested by Lowdin (45) for orthogonalizing two 

internally orthogonal basis sets. If it Is desired to add more than one 

basis function to the previous M basis functions before reoptimizing the 

parameters, the procedure outlined by Eqs. 42 and 45 is repeated as often as 

necessary. 

H+l 
To carry out the parameter variation It is necessary to factor D 

according to Eq, 4l and to obtain the set of parameters which characterizes 

Since Is known for the new basis, the orthogonal matrix is 

given by 

jM+l ^ (5M+I)I/2 pM+l ^ (49) 
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The M(M+1)/2 parameters, 7, which characterize can be determined by 

choosing an arbitrary set, Ygf and varying them until the inequality 

IC - (5° 

is satisfied. The convergence of Eq. 50 Is facilitated by choosing Initial 

values of the 7g's so that those connecting two old basis functions have 

the optimal value of the corresponding 7 in the M-dimensional basis, and 

setting those 7^'s which connect the new basis orbital with the old ones to 

zero. 

Strategy of optimizing the natural orbltals 

in the determination of the APSG wave function for beryllium and the 

first row four electron Ions by MR, the final wave functions were built up 

from minimal, single determinant wave functions by systematically adding 

one or more basis orbltals and reoptlmlzing at each stage. The number of 

NO'S retained throughout the variational procedure was always the maximum. 

I.e., the same as the number of atomic basis functions. This method was 

taken over here. Another strategy would be to start with the Hartree-Fock-

SCF wave function and determine the APSG wave function from that point of 

departure. If the latter procedure Is used, n(2m-n-l)/2 primary parameters 

out of a total of m(m-I)/2 parameters are determined initially by the 

HF-SCF procedure or Its equivalent (where n Is the number of gemlnals and 

m the number of basis functions, and one has m > n). The addition of the 

remaining natural orbitals. I.e., m-n more, furnishes (m-n)(m-n-l)/2 addi

tional secondary parameters which can be varied. 

The method outlined in Eqs. 42 and 4$ for adding one basis orbital at 
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a time makes it very convenient to vary all parameters at each level at 

which the wave function is reoptimized. Since the initial function in 

the expanded basis remains always very close to the optimal wave function, 

the variation procedure does not have to move very far in parameter space 

to find it. Nevertheless the calculation becomes quite time consuming if 

the number of molecular orbitals goes beyond 15. In the alternative scheme 

mentioned above the secondary parameters are arbitrary prior to reoptimi-

zation, however, the wave function would at least be as good as the HF-SCF 

wave function, and therefore, the variation procedure would perhaps, here 

t o o ,  n o t  h a v e  t o  m o v e  t o o  f a r  i n  p a r a m e t e r  s p a c e  i f  a  j u d i c i o u s  i n i t i a l  

choice of the secondary parameters can be made. After the wave function 

has been expanded to m natural orbitals and optimized in terms of the 

secondary parameters, the primary parameters may have to be revaried in 

order to obtain a reasonably optimized wave function. It would be valuable 

to establish the relative merits of the two schemes by comparitive calcula

tions in the determination of similar wave functions for similar systems. 

Computational Considerations 

The computer program is logically similar In structure to the diagram 

in Figure 1. At certain intervals the Input data is updated so that the 

calculation can be stopped and restarted without the loss of intermediate 

results. Blocks A and C are minimization schemes based on a method 

suggested by Powell (46) which determine the optimum values of the orbital 

exponents and rotation matrix parameters. The largest portion of computing 

time is spent in block B, evaluation of the atomic integrals, and blocks D 

and E, formation of the geminal matrix elements In the independent 
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particle calculation where the wave function is represented as a single 

Slater determinant, evaluation of the atomic integrals is usually the rate 

determining step. In the context of an APSG calculation the single deter

minant wave function involves evaluation of only one of the geminal matrix 

elements per geminal, namely 

[HpNO' HpNO' • • • ^ Hp^g] 

Here the subscript PNG means prinicpal natural orbital. Extension of the 

gemlnals beyond the PNG rapidly Increases the number of matrix elements 

which must be calculated. These matrix elements are made up of the molecu

lar Integrals, many of which are quadruple sums over the atomic integrals 

such as 

"e I 't "ck "pk' V "«f [kk' IM.'], (51) 

and it is due to the large number of molecular integrals which arise that 

the time needed to evaluate all of them is about twice as long as that 

needed to evaluate all the atomic integrals for a calculation of the total 

energy. For example. In the LiH wave function, which is expanded in terms 

of 18 basis orbitals, it takes approximately 15 minutes to calculate the 

energy. The atomic integrals require about five minutes, and the rest of 

the time, 10 minutes, is spent forming geminal matrix elements. The solu

tion of Eq, 23 proves to be a trivial part of the calculation. 

From the computational point of view the new feature of this calcula

tion is the introduction of the rotation matrix and its variational para

meters, Within a given symmetry type the number of rotation matrix para

meters which arise for m basis functions Is m(m-l)/2, whereas only m 
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orbital exponents are needed. Due to the stringent symmetry requirements 

in atoms the number of rotation matrix parameters is small even for large 

basis sets. In diatomic molecules, the relaxed symmetry yields a large 

increase in the number of parameters which can be varied. This can be seen 

by comparing LI and LIH where seven and seventy parameters are free to be 

varied respectively. From Eq, 51 It Is seen that the molecular integrals 

must be recomputed each time any of the parameters are varied, while the 

atomic Integrals need to be recalculated only when the orbital exponents 

are varied. In contrast to the single determinant calculation the time 

consumed for evaluation of the molecular matrix elements is as important 

as that used for the evaluation of Integrals, 
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WAVE FUNCTIONS AND ENERGIES AT THE EQUILIBRIUM DISTANCE 

Basis Functions in Diatomic Molecules 

Atomic orbital basis 

The basis functions are taken to be real Slater Type Atomic Orbitals 

(STAO's) with origins at the nuclei, and have the form 

X = Cn r"-' (52) 

where 

and 

'n (53) 

= % (») 

cos m (p/[ (1+6 ) jt] ̂  m > 0 
mo' 

sin |m|cp/ m < 0 
(54) 

and the 6^^ are normalized associated Legendre functions (4?). The use of 

Slater Type Atomic Orbitals rather than elliptic orbitals as basis func

tions for diatomic molecule wave functions has one Important advantage in 

that it is possible to calculate "corresponding" separated atom wave func

tions. In the present application of the separated pair model, the conclu

sions made concerning its efficacy In the general case have been signifi

cantly influenced by the separated atom results. Moreover, since a major 

aim of quantum chemistry is the study of chemical reactions, it is essential 

that wave functions of comparable degree of approximation can be determined 

for both reactants and products. 

Symmetry considerations 

It can be shown (48) that the APSG wave function can be constructed to 

conform to the desired symmetry state of the system under study by forming 
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it from symmetry adapted geminals* The energy expression Eq* 14 has been 

restricted to singlets with the spin function 

8(1 ,2 )  =  Cad)  P(2)  -  @(2)  ; ( I ) ] /V2  (55)  

and doublets with the spin function 

0(1) = a(l) or p(l) . (56) 

The space geminals are constructed from symmetry adapted natural 

orbltals» The ground state of LIH and BH is and the natural orbitals 

must be eIgenfunctions of such that = 0, The natural orbitals for the 

-*2 
atoms must be eigenfunctions of L as well as L^* The ground states for Li 

2 2 
and B are S and P respectively (49). Symmetry adapted natural orbitals 

are constructed by using a transformation matrix which does not mix basis 

functions belonging to different symmetry states, i.e., the elements of Q 

which would mix more than one symmetry type into a natural orbital vanish. 

Since the STAO's already belong to a given symmetry the orthogonalization 

-1/2 
matrix S will automatically have the proper block diagonal form, and the 

problem is reduced to constraining T to reflect the same symmetry. From 

Eq. 34 it is seen that each of the parameters which determine T connect two 

basis functions, and T can be made block diagonal by requiring that = 0, 

if a and P denote states belonging to different symmetries. 

As an example consider a six basis function expansion 

(''a' ""b' V ''b' "a' S) (57) 

where a and b indicate the two centers. If the ^re constrained so 

that only those which connect functions belonging to the same symmetry state 



www.manaraa.com

24 

do not vanish, there will be three non-zero parameters y „ t y 
b '^a' b 

<yj. J and T will be In block diagonal form. From Eq. 41 it is seen that 
a'* b 

0 will then also be in block diagonal form# and therefore six natural 

orbîtals are obtained 

<•*<;,' 's,' <58) 

where the subscripts denote the symmetry of each natural orbital. Moreover, 

the rt and n states are made doubly degenerate by choosing "y- - identical 

in value to 7 to conform to the % state. 
"a'*b 

Selection of basis functions 

The choice of type and number of basis functions is dependent on 

several factors. Enough basis functions must be included to account for 

the different types of correlation which are present in the hydrides: a 

description of i»i=out-c?rrelation is given by s-type orbitals, sigma orbi-

tals yield a description of left-right correlation, and angular correlations 

are accounted for by pi and delta orbitals. For each basis function added, 

a new natural orbital can be added, describing one of these correlations. 

However, each basis function also serves to improve the expansions of the 

natural orbitals already present in the wave function. An example is the 

addition of the 3dm orbital to hydrogen in LiH. It generates a natural 

orbital yielding 0.00058 hartree of correlation energy in the bonding 

geminal, and it also increases the correlation energy recovered by the n 

natural orbital already present in the bonding geminal by 0.0010 hartree. 

The APSG wave function for LiH is expected to be a closer approximation 

to the true wave function than the one for BH. This is essentially due to 
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the fact that LÎH seems to correspond more closely to a system with well 

defined pairs than BH, and it is only for such systems that the APSG approx

imation can be expected to yield good wave functions. Since one of the 

reasons for constructing these wave functions is to test the capability of 

the APSG wave function to approximate the true wave function for diatomic 

molecules, the LiH wave function is refined to a considerably higher degree 

than the BH wave function. 

Separated Pair Approximation in Li and LiH 

Geminal expansions 

The APSG wave functions for Li and LiH are 

$Li [(op-payV2] a} 

(59) 

$1;% [(op-paWz] Ag [(Qp-pa)//2]} 

where denotes the K-shell geminal, Ag the bonding geminal and is the 

unpaired electron natural orbital in Li. The LiH wave function is deter

mined at the experimental equilibrium separation of 3-015 bohr (27). The 

space geminals, A , are assumed to be expanded In the natural form according 
M* 

to Eq. 2. Due to the strong orthogonality condition, Eq. 6, the natural 

orbitals are uniquely assigned to one of the two geminals in LiH, while in 

Li all except one of the natural orbitals are assigned to Aj^. Within each 

geminal the natural orbitals can be arranged In order of decreasing 

occupancy and, because they are symmetry adapted, assigned to a symmetry 

class. This suggests, for the natural orbitals, the notation Miotj with the 

following meaning: 
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M is the geminal to which the NO belongs; 

i is the order of the NO by decreasing occupancy in 

the M'th geminal• 

a designates the symmetry class of the NO; 

j is the order of the NO by decreasing occupancy within 

its symmetry class in the M'th geminal. Generally 

the greater jj the more nodes the NO possesses. 

In LIH, the APSG wave function Is a superposition of 18 natural orbitals, 

nine In the K-geminal and nine in the B-gemlnal, The structure of each 

geminal is schematically represented by the charts: 

K-geminal 

Overall order (i) 12 3 456789 

Order within E (j) 1 2 3 4 5 
Order within n (j) I 2 3 
Order within 6 (i) I 

. , (60) 
B-geminal 

Overall order (i) 1 23456789 

Order within S (j) 1 2 3 4 5 6 
Order within H (i) I 2 3 

Thus, the K-gemlnal has three Jf natural orbltals, namely KJal, K5n2, and 

K7n3. Some of the wave functions for Li and LIH discussed later on have one 

or more of their natural orbltals omitted. These will be represented by 

charts similar to those given in 60, with dashes (-) for the omitted NO's. 

The Li APSG wave function is expanded In terms of six natural orbltals 

with five in the K-gemlnal which has the structure 
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K-gemînal 

Overall order(î)I2 3 4 g 

Order within S (j) 12 (6l) 
Order within P (j) 1 2 
Order within D (î) 1_ 

The unpaired electron occupies one natural orbital and thus needs no further 

clarifi cat ion. 

Natural orbital expansions 

The natural orbitals of the LiH wave function are linear combinations 

of 18 STAO basis functions, thirteen of which are centered on Li and five on 

H. The Li natural orbitals are expansions of seven STAO basis functions. 

The basis orbitals and their orbital exponents are given in Table 1. The 

separated atom wave function is constructed to correspond as closely as 

possible to the hydride wave function, so that meaningful estimates of the 

binding energy can be made. The explicit expansions of the atomic and 

molecular NO's in terms of the Slater Type Atomic Orbitals, I.e., the 

D-matrices are given In Tables 2 and 3, which also coatain the occupation 

coefficients. 

Transferability of K-geminal 

The concept of transferability of certain pair functions, in particular 

Inner shells, is a well known conjecture (50). A great deal of computa

tional effort could be saved if a gemlnal could be determined once, in the 

atom for example, and then Inserted Into the molecular wave function 

whenever it appears. Moreover, this would Impjy that such a gemlnal is only 

weakly affected and remains essentially constant in structure as the 

electron environment changes from one system to the other. If this Is 
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actually the case, one would furthermore expect that, in the calculation of 

difference properties, the detailed correlation structure of such a geminal 

might be omitted without introducing a significant error. It is therefore 

of considerable interest to investigate this conjecture on the basis of an 

accurate ab-initio calculation. 

For a comparison of the K-shell geminal of LIH with that of Li It is 

necessary to relate the K-natural orbitals occurring in the two systems. 

This correspondence is indicated by the following chart: 

Atomic 
K-NO's a )( ô_ 

Klsl Klal 
K2s2 K2o2 
K3pl K%3 K3itl (62) 
K4p2 K9a5 K5jt2 
KSdl K8ak K7ff3 K661 . 

For example the five (K5dl)-N0's of the Li atom split Into one a-NO, two 

«-NO'S, and two 6-NO's in LIH. Quantitative insight in the similarities Is 

furnished by Table 4, which lists the occupation coefficients for all these 

orbitals and also the overlap integrals between corresponding atomic and 

molecular NO's. From the close agreement of the occupation coefficients 

and the fact that all overlaps are close to one. It is apparent that both 

getnlnals have nearly Identical structure. An exception Is the (K9cr5) NO of 

LIH which differs markedly In occupation and spatial distribution from the 

(K4p^2) NO of LI. However, because of Its small weight It does not alter 

the general similarity and,.In fact, the overlap between the two geminals 

is estimated to be 0.997. By way of comparison it may be mentioned that 

the PNO of the bonding geminal and the L shell NO of the L( atom have an 

overlap of only 0.64748. 
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An even more detailed comparison can be made on the basis of Tables 2 

and 3 which confirms the close correspondence. It can also be seen from 

the contour maps of the NO's. The corresponding maps are as follows: 

Atomic NO Atomic Contour Molecular NO Molecular Contour 

Klsl Map No. 19 Kiel Map No. 1 
K2s2 Map No. 20 K2CT2 Map No. 2 
K3pl Map No. 21 K4cr3, K3itl Maps No. 3, 4 
K4p2 Map No. 22 K9a5, K5«2 Maps No. 5, 9 
KSdl Map No. 2% K8CT4 . K7w3. K661 Haps No. 6. 7. 8 

Bonding gemlnal 

The structure of the bonding gemlnal Is also given In Table 3. The 

PNO Is approximately given by 

(Biol) « 0.17(LI-L2s) + 0.21(LI-L2p) + 0.17(Li-L3s) + 0.66(H-ls) (63) 

and thus exhibits a strong polarization toward the hydrogen as indicated by 

the magnitude of the coefficient multiplying the H-ls orbital. This also 

is true for all secondary sigma NO's except for the molecular orbltals 

(B8a5) and (B9ct6) which are, however, both very weakly occupied. The pT 

natural orbltals show the same strong polarization toward the hydrogen as 

the sigma natural orbltals. In fact the two most strongly occupied pi 

orbltals are almost entirely hydrogenic, whereas the weakly occupied (B7«3) 

NO Is the only one with significant density near Li. Thus, as has been 

observed before (5I), lithium hydride has considerable LI*H character. 

As Is the case for the K-shell, the occupancies of the NO's decrease 

with Increasing number of nodes In regions of significant density, which 

can be easily seen from the contour maps. Two NO's which have the same 

number of nodes have approximately the same occupancy. The magnitude of 

the occupancy is of major significance In determining the effectiveness of 
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a natural orbital in recovering correlation energy as will be discussed 

later. 

It is also of interest to compare the PNO's with the SCF NO's. In Li 

the (LisI) orbital is essentially the SCF orbital. Its orbital energy of 

-0,19591 hartree differs only slightly from the SCF result of -0,19632 

hartree (52). In LiH, comparison of the (BIctI) NO with the localized bond

ing SCF orbital determined by Edmiston and Ruedenberg (53,54), and the 

canonical liF-SCF orbital, indicates that it is closer to the latter rather 

than to the former. This situation was also found In MR for the first row 

beryllium-like ions. 

Energy of Li and LiH 

Table 5 exhibits various aspects of the energy results obtained for Li 

and LIH. The total energy recovered by the LiH APSG wave function is -8.0541 

hartree, and -7.4694 hartree for Li, which are 99.80% and 99.89% of the total 

experimental energy (10). This means that about 80% of the correlation 

energies^ are recovered"for the two systems. The binding energy calculated 

from the two APSG wave functions is 2.30 e.v. or about 90% of the experimen

tal binding energy. The fact that the wave functions for Li and LiH both 

recovered about 80% of the correlation energy, and the marked improvement in 

the predicted binding energy when compared to that predicted by the HF-SCF 

wave functions, indicates that in Li the three electrons form a discrete pair 

and a lone electron, and in LiH the electrons form two discrete pairs. 

The total energies and the binding energies obtained by the PNO single 

^The total correlation energy is defined as E(HF-SCF) - E(exact), and the 
correlation energy recovered by the APSG wave function is E(HF-SCF)-
E(APSG). 
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determinant wave function and that calculated from the Hartree-Fock SCF 

wave function are also given. The fact that these results differ by only 

0.0008 hartree confirms that the PNO wave function is very close to the HF-

SCF wave function. The Hartree-Fock SCF calculations quoted is that of 

Cade and Huo (10), and also experimental quantities are taken from their tab

ulations. Their investigation is hereafter referred to as HF-SCF. The SCF 

result of Clement! (52) is adopted for the lithium atom. 

In view of the close similarity of the K-geminals in Li and LiH, it is 

of interest to know how the binding energy is affected if all natural orbi-

tals except the principal one are omitted from the K-shell geminal in Li as 

well as in LiH, As is seen from Table S3 this type of calculation yields a 

binding energy of 2.3^7 e.v. confirming again that the K-shell plays no 

essential role in molecule formation. 

Comparison with other calculations 

The HF-SCF wave function for LiH determined by Cade and Huo (10) has 

been used extensively throughout the present investigation as the upper 

bound for comparing correlated APSG wave functions of LiH. Their wave func

tion is expanded in terms of I6 Slater Type Atomic Orbitais; twelve are 

centered on Li and four on H. It yields an energy of -7-98731 hartree. 

Five other calculations on LiH are also included in Table $• The wave 

function of Bender and Davidson (55), constructed from a basis of elliptic 

orbitais, gives the best energy result to date. It is a superposition of 45 

configurations which were determined using expansions in the natural orbitais. 

It is superior in that it contains configurations describing both intrashell 

and intershelI correlations, whereas the APSG wave function coPTEains only 
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configurations describing intrashell correlations. It yields an energy of 

-8.0606 hartree. The occupation numbers of their principal inner and outer 

natural orbitals are 0.9^705 and 0-9749 which are close to the K- and 

B-geminal PNG occupancies Found for the present wave function. 

The APSG wave function of Ebbing and Henderson (17) is extracted from 

a CI wave function obtained earlier by Ebbing (18). Ebbing's wave function 

Is a linear combination of 53 configurations where the molecular orbitals 

are expanded in terms of elliptic functions, and it yields an energy of 

-8,04l28 hartree. The geminals of Ebbing and Henderson can be illustrated 

by the charts: 

K-geminal 

Order within S (j) I 2 
Order within n (j) 
Order within A (i) 

3 4 -

B-geminal 

Overall order (I) 12 3 4 5 6 7 8 9 

Order within E (j) 1 2 
Order within n (1) 

3 - - -

(64) 

which are to be compared with the geminals given In chart 60. In order to 

relate the present APSG wave function to the one of~Ebbing and Henderson, all 

the NO'S not contained In chart 64 were eliminated so that the geminals 

would be similar ii. structure to those of Ebbing and Henderson. This wave 

function yielded an energy of -8.0241 hartree as compared to -8.0179 hartree 

for their wave function. The difference appears to be due to the considera

bly extended sigma basis used here and the optimization of the present wave 

function. In addition their PNO result of -7.98I67 hartree Is slightly 
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higher than that obtained here. The correlation energy attributed to the 

inner and outer pairs by Ebbing and Henderson Is -0.0186 hartree and 

-0.0176 hartree respectively, while the corresponding quantities obtained . 

here are -0.020? hartree and -0,0208 hartree. A comparison of the contour 

diagrams given by Ebbing and Henderson with those presented here for the 

NO'S enumerated, show the similarities between the sigma natural orbitals 

of the two wave functions. 

Another recent CI calculation by R. Brown (56) using elliptic basis 

functions yielded an energy of -8.0556 hartree with a 69 term wave function. 

The occupancies of his principal inner and outer molecular orbitals is 

0.9970 and 0,9716, The wave function determined by Brown and Matsen (57) is 

of the valence bond^confIguration Interaction (VB-CI) type. Their wave 

function is made up of 28 configurations constructed from both elliptic and 

Slater type basis functions. They obtained an energy of -8.O56I hartree and 

determined values for the spectroscopic constants^ and They also 

obtained an eight term wave function for Li from which a binding energy of 

2.}k e.v. was calculated for LIH. The fifth calculation, by Harris and 

Taylor (58), is an open shell (VB-Cl) type, with a wave function made up of 

four configurations using elliptic basis functions. They reported an energy 

of -8.0387 hartree, and also determined a three configuration wave function 

for Li, From the latter they obtained a binding energy of 2,3 e.v. 

Separated Pair Approximation In B and BH 

Boron and Its hydride are the simplest atomic and diatomic cases where 

more than one electron pair are situated in the same region of space. They 

are therefore well suited for studying the applicability of the separated 

pair model to more complex systems,, in that complications which might arise 
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are easily isolated. 

Geminal expansions 

The APSG wave functions for B and BH have the form 

fA|^[(Qp-pQ!)//2] A|_p[(ap-pa)/N/'2] 

(65) 

$bh ALpC(Qp-pa)//2] Ag[(c#-pa)/V2]] 

where the geminal, denotes the lone pair (LP) function. The BH wave 

function is determined at an internuclear separation of 2,325 bohr, which 

is 0.005 bohr less than the experimental equilibrium distance of 2.336 bohr 

(29). Since the NO's are symmetry adapted the notation introduced for them 

in the discussion of Li and LiH can be adopted. 

The APSG wave function for BH is expanded in terms of 18 natural orbi-

tals, and six are assigned to each geminal. The structures of the geminals 

are as follows: 

K-geminal 

Overall order (i) 12 3 4 5 6 

Order within S (j) 12 3 4 5 
Order within n (i) 1 , 

B-geminal 

Overall order (i) 12 3 4 5 6 

Order within E (j) I 2 3 4 
Order within n (i) 1 2 , 

LP-geminal 

Overall order (i) 1 2 3 4 5 6 

Order within S (j) 1 2 3 4 5 
Order within n (i) I 

The B wave function is a superposition of seven natural orbitals. The 

(66) 
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geminais have the structures: 

K-geminal LP-geminal 

Overal1 order (î) 12 3 Overall order (i) 1 2 3 

Order within S (j) I 2 Order within S (j) 12 (67) 
Order within P (i)' 1_ Order within P (!) [ 

The oda electron in the B valence shell is represented by a NO with P 

symmetry. If this orbital has pz character, then it must be orthogonal to 

the pz' admixture of and A,p. Since the K and LP gemlnals are, however. 

both S, they contain px', py', and pz' orbitals In a symmetric fashion. 

Consequently the strong orthogonality for pz' indirectly restricts the 

forms of px' and py' as well. 

Natural orbital expansions 

The natural orbitals of the BH wave function are linear combinations 

of 18 STAO basis functions, of which fourteen originate from B and four 

originate from H. The B natural orbitals are expansions of seven STAO 

basis functions. The STAO's for the atom and the hydride are exhibited In 

Table 6 with their orbital exponents. The natural orbital expansions in 

terms of the STAO's are given In Tables 7 and 8 together with the occupa

tion coefficients. 

Transferability of K-geminal 

It is of interest to examine the question of the transferability of 

the K-shelI pair In B and BH as well as in LI and LIH. The change in 

symmetry that BH undergoes upon separation is more drastic than that which 

LiH experiences. It can therefore be anticipated that the K-shelIs of the 

B-BH pair will not be as similar as the K-shelIs of the Li-LIH pair. 
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In order to compare the two K^gemlnals it is necessary to obtain the 

correspondences between the K-natural orbital s of B and the K-natural orbi

tal s of BH. Comparison of the structures 66 and 67 shows that the BH 

K-geminal has two more natural orbitals than the B K-geminal. In order 

that the two K-gemfnàlâ hâve équivalent expansions, the two Weakest O NO's 

of the BH K-geminal are omitted, so that 

BH K-geminal 

Overall order (!) I 2 3 4 5 6 

Order within £ (j) 1 1 Z - -
Order within n (1) I 

The correspondences between the NO's are displayed as follows: 

Atomic Molecular 
K-NO's K-NO's 

g « 

Klsl Kiel (68) 
K2s2 KW3 
K3P1 K3g2 K2i(L . 

Comparison of the quantitative similarities can be obtained from Table 9 

where the occupation coefficients and overlap integrals for these natural 

orbitals are given. It is seen that the occupation coefficients of the 

respective NO's are still close and that the overlaps are not very different 

from one. The main source of difference appears in the overlap between the 

K-PNO's, which is somewhat smaller than for Li-LiH. The values of the 

overlaps given in Table 9 yield an estimated overlap of 0.97 for the two 

geminals. 

A more detailed comparison of the K-NO's can be obtained from Tables 

7 and 8. The corresponding contour maps are as follows: 
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Atomic NO Atomic Contour Molecular NO Molecular Contour 

KLSL Map No. 43 KICTI Map No. 25 
K2s2 Map No. 44 Map No. 28 
K3P1 Map No. 45 Klc2. K2jtl Maps No. 26. 27 . 

Bonding gemfnal 

The structure of the bonding geminal shows that BH is less polarized 

toward the hydrogen than LiH. The bonding PNC is approximately 

(Biol) « 0.22(B-L2PCT) + 0.33(B-L2pa') + 0.52(H-ls) ,  (69) 

and the Goeffirent multiplying the H=U basis orbital is eonsiderably 

smaller than in LiH. The contributions to the bonding PNO from Boron are 

essentially from pa-type orbitals, whereas Eq. 63 shows that in LiH it is a 

mixture of s-type and pa-type orbitals. Most of the secondary natural orbi

tals have significant density near both nuclei. Only the (B3«l) orbital is 

predominantly hydrogenic, but this is due to the requirement that it must be 

orthogonal to the (LP2al) NO. 

The (Llpl) orbital of B is close to the SCF orbital and has an orbital 

energy of -0.3078 hartree as compared to -0.3099 hartree (52) for the SCF 

orbital. In contrast to LiH, comparison of the (Blal) and (LPlal) natural 

orbitals with the localized SCF orbitals and the canonical SCF orbitals 

(53,54) shows that they are closer to the localized orbitals. 

Lone pair geminal 

A comparison of the LP-geminals of the two systems is also of interest 

since they furnish some insight into the severity of the strong orthogon

ality constraint and the inherent limitations due to the types of double 

excitation which can be obtained with a single product of pair functions. 
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The structure of the BH LP-geminal to be compared with the B LP-geminal is 

BH LP-geminal 

Overall order (i) I 2 3 4 5 6 

Order within E (j) 1 2 3 - -
Order within n (i) 1 

A comparison of the geminals can be obtained by displaying the correspon

ding LP-NO's as was done for the K-shell NO's. Two such charts are given; 

the one on the left gives the correspondences in terms of the natural orbi

tal notation, and the one on the right replaces that notation with the 

occupation coefficients of the NO's so that the electron distributions can 

be compared: 

Atomic Molecular Atomic Molecular 
LP-NO's LP-NO's LP-NO's LP-NO's 

CT It a It 

LPISL LP la I 0.9999 0.9738 
LP2s2 LP3a2 -0.0050 -O.OI6O 
LP3PI LP4a3 LP2itl -0.0050 -0.0102 -O.I6OO . 

It is seen that the LP-gemlnals of the two systems differ considerably in 

structure. The secondary orbltals of the B LP-geminal are very weakly 

occupied, and it is essentially the PNO orbital. The amount of correlation 

energy recovered, O.OOO9 hartree. Is small. In contrast, the (LP2itl) SNO's 

of BH are strongly occupied and recover a large amount, 0.044$ hartree, of 

correlation energy. 

It is of interest to compare the actual form of the (B-LP3pl) NO with 

the two corresponding (BH-LP4a3) and (BH-LP2nl) NO's. This can be done 

with the help of the explicit expansions given in Tables 7 and 8 which 

yield approximately 

(B-LP3pl) « I.3(L2p') - l.6(L2p) (70) 
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(BH-^3) « 1.5(B-L2p(T) - l.4(B-L2pa') (7I) 

(BH-LP2itl) « -1.1 (B-L2pa') (72) 

or, more easily, with the help of the contour maps 28, 32, and 48. It is 

readily recognized that the atomic (LP3pl) orbital and the molecular (LP4a3) 

orbital have essentially 3p character (one angular and one radial node), 

whereas the molecular (LP2itl) orbital has essentially 2p character (one 

angular node only). The reason for this change in nodal behavior is as 

follows: In the atom the secondary pa~type orbital in the LP geminal has 

to be orthogonal to the pa-type orbital of the unpaired electron, whence 

its radial node. For symmetry reasons this character must also be adapted 

bv the secondary pjt-tvpe orbital s of the LP-geminal as was discussed above. 

In the molecule this symmetry requirement is, however, removed and pa-type 

and p«-type orbital s are no longer tied to each other. Therefore, the 

secondary pn-type orbital s of the LP-geminal are not restricted by an 

orthogonality requirement to any other n orbital with high occupation 

number. It is clear that a Bp-type orbital, with its additional radial 

node has a higher kinetic energy and thus a higher promotional energy than 

a 2p-type orbital. It has therefore a weak occupation number and is much 

less effective in recovering correlation energy. The removal of this radial 

node from the (BH-LP2nl) orbital upon molecule formation thus creates a 

possibility for a stronger occupation and for recovering substantial corre

lation energy which was not available in boron. 

It might be pointed out that even if the strong orthogonality condi

tion is relaxed the (Llpl) NO of boron can only be mixed into the B LP-

geminal through triple excitations since doubly excited configurations which 

would mix this NO into the B LP-geminal would vanish. This fact points out 
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a serious limitation of wave functions built from a single product of 

geminals. 

Energy In B and BH 

Various aspects of the energy of B and BH are given In Table 10, The 

total energy obtained by the boron APSG wave function Is -24.5622 hartree 

and that of BH yields -25.2053 hartree, which is 99.62% and 99.66% of the 

experimental energy (lO). The single determinant and HF-SCF energies are 

also given. The correlation recovered by the APSG wave functions for these 

two systems Is considerably less than that recovered for LI and LtH. It Is 

25.69% and 46.47% of the total correlation energy for boron and BH respec

tively. The reason for the difference in correlation energy recovered by B 

and BH Is due to the loss of a good LP-geminal in B. it may be that the 

small amount of correlation recovered by BH is also caused by the need for 

the bonding and lone pair geminals to share certain orbitals for describing 

intrashelI correlation. However, it seems more likely that the intershell 

terms are important in this case, which also requires going beyond the 

single product of separated geminals for their recovery. Because of the 

large difference In correlation energy recovered, the estimated binding 

energy is greater than the experimental binding energy and has a value of 

3.858 e.v. 

Since the K-geminals of the two systems are still quite close, the 

binding energy obtained from the B and BH wave functions with the K-shell 

correlating NO's removed has also been calculated. It is 4.105 e.v. which 

again confirms the fact that the inner shells of B and BH are not quite as 

similar as those of Li and LiH. 
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Comparison with other calculations 

The number of calculations which have been done on BH is surprisingly 

few. BH seems to be an excellent system for studying the capabilities of 

various approximations to handle a more complex case while still having few 

enough electrons to be manageable. In addition, the unusual magnetic pro

perties of BH have been investigated using SCF wave functions (59,60), and 

it will be of interest to apply correlated wave functions to the calcula

tion of these properties. 

The HF-SCF wave function for BH determined by Cada and Huo (lO) is 

used as the upper bound for comparing the correlated APSG wave functions 

obtained in the present investigation. Their wave function is expanded in 

terms of sixteen Slater Type Atomic Orbitals, twelve of which are centered 

on B and four on H. The HF-SCF energy obtained from this wave function is 

given in Table 10. 

The recent calculation by Harrison (6l) is the best one prior to the 

present one. With a VB-CI wave function constructed from Gaussian basis 

orbitalsj an energy of -25.1455 hartree was obtained. Ohno (62) determined 

a 13 configuration wave function for BH constructed from Slater Type Atomic 

Orbitals. It yielded an energy of -25.110 hartree, and with a two configur

ation wave function for B he obtained a binding energy of 2.22 e.v. The 

calculation of Kaufmann and Burnelle (63) is an SCF type, and an energy of 

-25.1298 hartree is reported. Their wave function is constructed from 

Gaussian basis orbitals. 
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CORRELATION ANALYSIS AT THE EQUILIBRIUM DISTANCE 

Formulation of Correlation Energy 

In order to obtain some insight Into how the separated pair model 

describes correlation, it Is desirable to partition the wave function and 

the energy into two parts, one being essentially the optimal independent 

particle contribution, and a remainder, which can be attributed to correla

tion. Since the PNO wave function is very nearly identical with the 

Hartree-Fock Self-Consistent-Field wave function, it esn be taken as a 

nearly optimal representation of the Independent, particle model. 

A useful partitioning can be obtained by decomposing each geminal into 

a PNO part and a correlation term, namely 

+ A 

(73) 

V'" ' f Vi "M"' • Vi V" • 

Insertion of these identities into the general formulas 1 and 2 yields the 

corresponding decomposition of the total separated pair wave function. 

$ = $(PNO) + A$(corr) . (74) 

The overlaps of the correlation term with the PNO term are given by 

J dT §(PNO) A $(corr) = n (C - 1) , 
p. ^ 

and, in LiH and BH, are found to be 0.00002 and -0.00000 for the latter. 

From this division of the wave function the following partitioning of 
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the density matrices of Eqs. 7a and 7b is obtained: 

= P°0.l') + Ap, (],!') 
M- M» M* 

(75a) 

â p ( i , i ' ) - « ^ s c 2 .  < ^ , ( 1 . )  - y o y p ) )  

«^(1,2; l'.2') = «°(l,2i l',2') +Ayi,2; I',2') 

(75b) 
A ,^(1,2; r.2') . (1 (2') -

«ijV • 

By virtue of Eqs. 8 and 9 for the total density matrices, Eqs. 75a and 75b 

yield a decomposition of the energy into a PNO part and a correlation con

tribution 

E = E(PNO) + AE (76) 

where 

E(PNO) = 2 E(PLO,|JLO) + S I (^O,VO) . (77) 
|X [l<v 

For the correlation energy AE, one obtains 

- AE = 5] AE(ii) + S Al(|x,v) (78) 
P. |JL<V 

with 

AE(ji) = 2 AE(tii ,w) = 2 C .C . AS(p.i ) 
i j l,j w 

A£({liiM.j) = E(p.i,|jLj) - 6.j E(||io,|jx)) 

Al(IJ.,v) =2 Al(jxi,vj) = S C^;C\ A^ (p.i ,vj) 
i j ij  ̂  J 

A^((ii,vj) = I OlifVj) - I (kJLO,vo) 

(79) 

(80) 
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This energy partitioning Is that suggested by MR, and it has thus been 

shown that it can be derived from a corresponding correlation partitioning 

of the APSG wave function, namely that of Eq. 74. 

It is furthermore of Interest that the variational Eq» 23 for the 

occupation coefficients can be written in the form 

where 

(PNO) 

= Ag(^l,)lj) + 6.. S E C^. Ai(iii,vj) 
'J vW j VJ 

(82) 

and 

A6 = e - e 
|X |1 JiO 

= € - {E(ji0,110) + s l(jio,vo)} 
(83) 

are further quantities characteristic of correlation. Whereas AE(p.) is the 

intraqeminal correlation contribution, the quantity Ae^ represents the 

energy change due to correlation of the geminal within the context of the 

entire system. 

General Results 

The correlation analyses resulting for Eqs. 78-80 for Li, LIH, B, and 

BH are given in Tables 11 through 14. These tables are similar In structure 

to those given In MR for the 4-electron atomic systems. 

A number of conclusions reached by MR are confirmed by the present 

results. Among these are: 

1. The principal source of energy lowering In the separated pair 
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approximation are the intrageminal correlations AE(^). The 

terms 61 are smaller and may be either negative or 

positive. 

2, The main contributions to the Intrageminal correlation AE([i) 

come from orbital Interactions between the principal NO's and 

the secondary NO's. Contributions arising from Interactions 

between other strongly occupied NO's and the secondary NO's 

also lower âE(|i), but are smaller than the PNO contributions. 

3, For each secondary NO, two types of energy quantities occur: 

The negative 'exchange' energies, AE(iil,^j), and the positive 

'promotion' energies E(|ii,|ii). For the weakly occupied NO's 

the promotion term eliminates approximately one-half of the 

exchange terms. 

4, If Eq. 79 Is written in the form 

AE({i) = L AE(|ii) (84) 

with 

6E(pj) = Z AE(pJ,pj) (85) 

one finds that AE(|JLO) is by far the largest contribution. 

For the moderately occupied NO's the AE(^i) are usually 

negative, and for the weakly occupied NO's they are very 

small and may be negative or positive. The AE(|ii) are the 

orbital correlation energies, and the AE(^i,|ij) are the 

orbital interaction energies. 

Even in BH, where the separated pair function clearly does not recover 

I the correlation effects-one finds that whatever is recovered is still 

inly due to the terms AEQio). Furthermore, according to Eqs. 79 and 85 
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AE(|io) = Z C C . A€(jjLO,p,j) , (86) 
j (/o) W 

and, since the exchange integrals Aê(|io,p,j) are positive, it is seen that 

AE(fio) IS appreciable and negative Only if there exist one or a few secon

dary orbital s for which is opposite in sign to and remains strong 

enough so that ) is effective. For the K-shell this implies 

C . of about -10 and for the L-shell it requires C . of about -10 it 
PJ W 

therefore appears that, even in cases where the separated pair approximation 

can not recover al1 correlation effects, it can recover intrashe11 correla

tions if qeminals can be constructed which contain, 1n additIon to the 

pr incipal natura1 orbi tal, at least one moderately occupied secondary orbi-

ta1 with occupation coefficient opposite in siqn to the occupation coeffi-

cient of the PNG. 

K-shell Correlation Energies 

The main feature of the K-shell gemlnals is that the bulk of the corre

lation energy is recovered by two or three moderately occupied NO's. In LiH 

the K-shell orbital interactions AE(Klal, K2o2), AE(Klal, KJnl), and AE(lol, 

K4a3) recover -0.03164 hartree of a total of -0.03582 hartree. The (K2ct2) 

orbital describes K-shell in-out correlation, and the (K4<T3) and (K3nl) 

orbitals describe atomic angular correlation. Most of the K-shell correla

tion in BH is recovered by the orbital interactions between the (K3CT2), 

(K4O3), and (K2jtl) secondary NO's and the K-PNO, namely -0.02495 hartree out 

of a total of -0.0260 hartree. The (K4a3) NO describes in-out correlation 

and the (K3o2) and (K2jtl) NO's describe atomic angular correlation in BH. 

The separated atom K-geminals show similar features. 

The difference in the amount of correlation recovered by the K-geminals 



www.manaraa.com

47 

in the hydrides is not clear, especially since in the separated atoms the 

correlation recovered is nearly the same. It is seen that the loss of 

correlation energy In the K-geminal of BH is associated with the a secondary 

NO 'S, whereas the correlation energy recovered by the « SNO's remains about 

the same In the two systems. It appears therefore that the L-shell elec

trons in BH are Interfering with the K-shell secondary NO's in such a way 

that the orbital Interaction energies of the a K-NO's are decreased. More

over, this interference appears to depend only on the electron population of 

the L-shell, since, if It also depended on the nuclear charge, one would 

expect to find the decrease in effectiveness of certain K-shell secondary 

NO 'S in both BH and B. 

Bonding Gemlnal Correlation Energies 

Some of the features of the B-gemlnals are similar to the K-gemlnals In 

that, here again, the bulk of the correlation Is recovered by two or three 

secondary natural orbltals. Another characteristic which can be mentioned 

for both the K- and B-gemlnals Is that, for those cases where the APSG 

approximation is effective, one has AE(^) % while for the less effec

tive ones one finds AE((i.) < Ae^. 

One of the Interesting points brought out by Tables 12 and l4 Is that 

some of the intrageminal correlations of moderately occupied orbltals are 

positive. In their analysis of the Ebbing and Henderson (17) wave function 

for LIH, Miller and Ruedenberg already noted this feature for the orbital 

Xj and wondered whether it would persist for a more accurate wave function. 

Actually one finds for these positive contributions a sum of 0.00151 hartree, 

which is greater than the 0.00120 hartree obtained by Ebbing and Henderson. 
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Such positive contributions seem to be peculiar to the bonding geminals of 

both LiH and BH and do not appear In the other geminals. 

Lone Pair Geminal Correlation Energies 

The differences between the LP-geminals of boron and BH have already 

been discussed. It Is seen that the LP-gemlnal of BH has only one secondary 

orbital which recovers substantial correlation, namely the (LP2jtl) NO. As 

was pointed out in MR the contributions to the intershell interaction are 

essentially between strongly occupied NO's, i,e,, they are mainly non-

dynamical interactions (64), This situation Is still true here, and, In 

particular, the large value of AI(LP,B) in BH is almost entirely due to the 

interaction Al(LP2jtl, Biol). On the other hand, LI, LiH, and B have no 

strongly occupied secondary NO's, and thus the intershell interaction terms 

are either small or negligible. 

In comparing the results for LIH and BH It Is seen that the decrease In 

effectiveness of the separated pair approximation is characterized chiefly 

by a decrease In magnitude of the AE({i) contributions, and the appearance of 

non-negligible positive contributions In the intergeminal Interaction terms. 

In the worst cases, such as the B LP-gemlnal AE(LP) Is nearly zero, and the 

geminal reverts to the Hartree-Fock orbital. 
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WAVE FUNCTIONS AND ENERGIES AS FUNCTIONS OF THE INTERNUCLEAR SEPARATION 

Determination of Wave Function and Energy 

Interpolation of Parameters 

In order to find wave functions and energies as functions of the inter-

nuclear distance, R, it is necessary to perform the minimization procedure 

at various values of R. The number of parameters to be varied is 88 and 102 

for LiH and BHj respectively, and therefore a complete variation is possible 

only for relatively few points» On the other hand, it is clear that the 

optimized parameters will be smooth functions of R, and one might expect 

that this fact could be exploited to reduce the need for independent minimi

zation at each value of the internuclear distance. This idea is pursued 

here: A detailed minimization is carried through at selected values of R, 

and a parameter interpolation procedure is developed for intermediate values 

of the internuclear distance. 

The reasonableness of such an approach is suggested by the fact that 

the values which the various parameters assume in the separated atoms ,do not 

differ greatly from the values which are found for the hydrides at the inter

mediate distances discussed in the preceding section. Consider first the 

parameters 7^ determining the matrix T. Most of them vanish In the atoms 

since the elements of J connecting orbitals belonging to different eigen-

values of L and vanish. In the hydrides the analagous 7's are all close 

to zero. In LiH there are seven 7's which do not vanish for R = » and their 

maximum change is such that 

0 < |'y(R=3.0l5) - Y(R==») I < It/8 . (87) 

For BH, there are 13 7's which are non-zero in the separated atom limit and. 
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with one exception, they vary within the range 

0 < |7(R = 2.329) - 7(R = «0)1 < it/k . (88) 

The exception mentioned is , âs ÎS evident from the following list 

'y(B-Lpcr.B-Lpg') ^(B-Lpit.B-Lpjt') 

B -0.97234 -0.97234 
BH -0.83956 -2.10426 . 

The splitting of the atomic Y(B-Lp,B-Lp') parameter into the two molecular 

parameters, 7(B-Lpa,B"Lpa') and •yCB-Lpn^B-Lpn'), is of course due to the 

change from spherical to cylindrical symmetry. However, even 7(B-LpjtjB-Lpir') 

changes only from -2.11004 to -2.11223 as R changes from 2.2 to 2.7 bohr. 

Finally, Inspection of Tables 1 and 6 shows that the difference between 

the orbital exponents at R = Rg and R = » is also small enough to suggest 

the possibility of an Interpolation. 

The approach outlined here is found to yield good results as well as a 

considerable reduction in computing time. It should therefore be of parti

cular interest in larger systems, where the problem of many parameters Is 

even more severe. 

Optimization at reference points 

As discussed in the previous section, complete optimizations were 

carried out at R = 3.015 and 2.329 bohr for LiH and BH respectively. Addi

tional detailed Independent minimizations were performed at the internuclear 

distances R = 2.8, 4.0 and 8.0 bohr in the case of LiH and for R = 2.2, 2.7 

and 5.0 bohr in the case of BH. However, these minimizations did not com

prise all parameters in each system; only those which could reasonably be 

expected to show a significant change with the internuclear distance were 
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varied. 

In the preceding section, It was pointed out that certain geminals such 

as the K-sheli geminals in LIH and BH are rather insensitive to the changes 

in electronic environment occurring during molecule formation. It was 

furthermore found that the binding energy was little affected when the 

secondary natural orb I ta Is were omitted in these geminals. In view of these 

results It seems likely that the secondary NO's of such geminals hardly 

change with R, and the parameters which are most Influential in their 

determination will very nearly keep the values obtained for them at R = 3-015 

for LIH and R = 2.329 for BH. If this Is the case It should be adequate to 

remlnlmize only' the remaining parameters and, furthermore, to omit the 

insensitive secondary NO's during the course of such minimization. If the 

computer program is appropriately constructed the omission of certain NO's 

can be accomplished by simply setting the corresponding matrix elements In 

Eq. 23 equal to zero. 

On the other hand. It is important to retain al1 K-shell basis orb I ta Is 

because they are required for a good representation of the principal natural 

orbital of the K-shell. That this is so can be seen by comparison with the 

K-orbital of the HF-SCF wave function which, as has been seen before, is 

very close to the K-PNO. Similarly, It seems desirable to retain all outer 

shell basis orbital s to maintain optimal representations for the retained 

natural orbltals. Thus, wave functions with geminals of the following 

natural orbital structure were optimized at the aforementioned values of R: 



www.manaraa.com

52 

LiH K-geminal 

Overall order (l) I 23456789 

Order within E (j) I - - - -
Order within n (j) - - -
Order within à (i) -

LIH B-gemlnal 

Overall order (!) 12 3 4 

and 

Order within Z (j) 12 3 
Order within n (i) 1 

4 
2 

- -

BH K-geminal 

Overal1 order (!) 1 2 3 4 ? 6 

Order within 2 (j) 1 
Order within n (i) 

M 

BH LP-geminal 

Overall order (i) 1 2 3 4 5 6 

Order within E (j) 1 
Order within II (I) 1 

2 3 

BH B-geminal 

Overall order (i) 1 2 3 4 ? 6 

Order within E (j) 1 Z 
Order within n Ù) 1 

3 -

It may be noticed that certain very weakly occupied binding and lone pair-

orbitals are also omitted. Since there are now less natural orbitals than 

basis orbitals the number of independent parameters y.j introduced by Eqs. 

34-38 for the orthogonal J matrix are also reduced. The correct number of 

independent parameters is taken into account if one excludes from variation 

those Yjj for which both indices, i and j, refer to any one of the omitted 

NO'S. 

The reduction in the number of NO's leads therefore to two kinds of 

calculational economies: A number of matrix elements of Eq. 23 are 
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omitted, and the number of Y~variations Is reduced. Of these two the former 

savings Is more significant and amounts to about a 50% reduction in comput

ing time. 

The orbital exponents were varied for all R values mentioned, except 

for R = 8 and 5 bohr in LIH and BH respectively. At these large distances 

the gain of such variation seemed to be too small to justify the investment. 

After the described optimizations had been carried out to determine the 

orbital exponents and the J matrix, the values of the parameters were then 

taken as adequate representations for all natural orbltals of the full wave 

function. Using these orbital exponents and J matrix elements to calculate 

the matrix elements between all natural orbltals, the occupation coeffi

cients were determined from Eq. 23 to yield the full wave function and 

energies at the aforementioned points of R. The resulting wave functions 

are given In Tables 15-20. 

Energy as function of R 

Graphs 1 and 2 give the energies for LIH and BH as functions of the 

Internuclear distance. They are based on energy values calculated at 

Intervals of 0.05 bohr. The parameters are obtained from a linear interpo

lation between the previously discussed reference points. A summary of some 

of the relevant energy results are listed In Tables 21 and 22 respectively. 

Graphs 3 and 4 contain a comparison of the PNO energy curves with the 

HF-SCF energy curves of LiH and BH. The two types of curves are very nearly 

parallel. In LIH the maximum deviation from being parallel Is 0.00018 

hartree, and in BH it is 0.0052 hartree. This parallelism seems to confirm 

that the interpolation optimization scheme used here is indeed satisfactory. 
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Electronic Structure as Function of internuclear Distance 

Essential features of the dependence of the electronic structure of LIH 

and BH on the internuclear separation can be obtained from examining the 

occupancies of the important natural orbitals which are summarized in Tables 

23 and 24, and the changes of the intra» and interqemlnal correlation 

energies displayed in Graphs 5 and 6 as functions of R. Only the occupan

cies of the PNO's and the moderately occupied SNO's are given in the tables. 

Inner shelIs 

It is seen from both the occupancies of the NO's and from the correla

tion energy plots that the K-shells of both hydrides are essentially inde

pendent of R. The maximum change of the occupancy of the K-shell PNO of LiH 

is only 0.00026, and in BH it is 0.00004. These changes, and the very small 

changes in occupancy exhibited by the K-shell SNO's have essentially no 

effect on the overall electronic structure of these hydrides as R Increases. 

In his recent calculation of the states of LiH, R. Brown (56) notes the 

same trend, and the maximum change in the occupancy of his principal K-shell 

configuration is 0.00021 which is remarkably similar to that found here. 

Comparison of the K-shells of the two systems shows that the BH K-shell is 

less affected by changes in R than LiH. This Is perhaps due to the fact 

that in BH half of the valence shell electrons essentially retain their 

atomic character. 

Character of bonding qeminals 

The behavior of the bonding geminals is determined by the fact that the 

(Biol) and (B2a2) NO's must pass to the natural orbitals for the lone elec

trons of the separated atoms. The other natural orbitals of the bonding 
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gemlnal become vacant for an APS6 wave function. This fact Is Indicated by 

the form of Eq. I6 where it Is seen that the intragemlnal term, 

3, reduces to zero when the bonding gemlnal Is replaced by a 

natural spin orbital for an odd electron. Furthermore, Eq. 33 shows that 

and â . . become identical for an unpaired electron and hence the natural 
I ILL,P.! 

spin orbital for it Is an approximation to the SCF orbital. In the previous 

section this was indeed found to be the case for LI and boron. 

The detailed nature of the passage of the bonding gemlnal to the separ

ated atom gemlnal Is given by the following relations (65): Considering 

only the first two natural orbitals, the bonding gemlnal is approximately 

Ag « Cg, 4,(1) 4,(2) + Cg2 dgf') *2(2) (89) 

with 

d, = A + B 

#2 = A' - B' 

where A represents the basis expansion originating from center A, and B 

represents the basis expansion originating from center B. The transition 

from two strongly Interacting valence shells to two weakly interacting 

separated atoms can be seen by writing Ag in the equivalent form 

A g W  ( C g ,  +  C g g )  { 0 , ( 1 )  0 , ( 2 )  + 0 2 ( 1 )  0 2 ( 2 ) }  /  2  

(90) 
+ (Cg, - Cgg) (0,(1) 02(2) + 02(1) 0,(2)) / 2 

wi th 

0, = (4, + dg)/ ^2 1 
( (91) 

0 2 =  ( 4 i  -  4 2 ) / > / 2  J  
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For very large R one finds (note that Cgj > 0, Cgj < O) 

«BI * «B2«CBI - '62 

and finally at Infinite separation Cgj = ^Cgg so that 

A g  =  { 0 , ( 0  # 2 ( 2 )  + 0 2 ^ ' ^  * | ( 2 ) } /  J Z  •  ( 9 2 )  

This behavior of the occupation numbers for the (Biol) and(B2a^ orbitals 

can be seen from Tables 23 and 24. In LIH the occupancy of the (Blal) NO has 

decreased from 0.9712 at R ^ 3.00 bohr to 0.7908 at R = 7.00 bohr, and at the 

same points the fe2a2) NO has increased from O.OI5I to 0.2067 so that (Cgj+Cgg^ 

has decreased from 0.86284 to 0.43457, and (Cgi'Cgg) has increased from 

I.IO8I8 to 1.34391. BH shows similar trends as can be seen from Table 24. 

The concomitant change In the natural orbital s 02 

Eqs. 89 and 91 Is Illustrated In Diagrams 1-6 for the LIH molecule. These 

diagrams are similar to the ones given in Appendix B, and details concerning 

their use may be found there. (The solid lines denote positive regions of 

the orbital while the dashed lines denote negative regions and the dotted 

lines are the nodes). Diagrams 1 and 2 represent the (Biol) and (iB2a2) NO's 

at R = 3.00 bohr; Diagrams 3 and 4 are the same NO's at R = 7.00. Compari

son of Diagrams I and 3 and 2 and 4 clearly shows the shift of electron 

density from the bonding region to the regions around the two nuclei with 

the concomitant formation of the Is orbital for H and the 2s orbital of Li. 

The formation of the separated atoms is seen even more clearly from the plots 

of the separated atom orbitals, and ™ 7.00 bohr, exhibited In 

Diagrams 5 and 6. It Is apparent that at this distance the H orbital has 

very little admixture from the LI atom, whereas the more diffuse Li orbital 
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still Interacts to some extent with the H atom. It is clear from Diagrams 

5 and 6 that Is approaching the 2s orbital of LI and Is approaching 

the Is orblta I of H, 

Correlation in bonding geminals 

Further insight Into the behavior of the bonding pair is gained from 

examining the changes in correlation energy as the nuclear separation Is 

increased, and are exhibited in Graphs 5 and 6. The change in character 

of the (B2a2) NO from a moderately occupied~correlating orbital in the 

bonding geminal to the strongly occupied orbital A' - B' appears as a rapid 

increase of the absolute value of AE(B) with Increasing R. This increase 

is associated with the (Blal, B2a2) interaction since the orbital Interac

tions of the remaining SNO's are becoming weaker. For example, in LIH the 

correlation energy associated with the (Blol, B3al) orbital Interaction 

changes from -0.0122 hartree at R = 3.00 bohr to -0.0017 hartree at R = 8.00 

bohr, which indicates that the angular correlation is decreasing with 

increasing R. At R = R^, AE(B) represents the energetic error due to inap

propriate "ionic terms" by which the "MO-approximation" djdg differs from 

the "covalent VB approximation" of Eq. 32, which describes more appropriately 

two weakly Interacting separated atoms. The behavior of the total correla

tion energy as a function of R and the correlation splitting between the 

(B2CT2) orbital and the (B3jtl) orbital Is in agreement with that found by 

Davidson and Jones (66) In their analysis of the correlation splitting In Hg. 

The AE(B) curve of BH Is similar to that of LIH, but Its rate of change 

is slower. This Is perhaps due to the fact that because of the higher 

charge of the boron nucleus It will be less affected by a hydrogen atom over 
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an equal interval of R than Li. Examination of the correlation splitting 

shows that, here too, the increase of AE(B) Is due to AE(Blcrl, B2a2); where

as AE(Blal; B3#l) changes from -0.006% hartree at R = 2.329 bohr to -0.0039 

hartree at R = 4.5 bohr and presumably goes to zero at infinite separation. 

Thé behavior of the intergeminal correlation term AI(K,B) is due almost 

entirely to the Al(Klal, B2a2) interaction which changes from an interaction 

between a strongly and moderately occupied natural orbital to an interaction 

between two strongly occupied natural orbitals. The former interactions are 

in general small, whereas the latter are found to be fairly large and posi

tive. The magnitude of A!(K,B) Is, however, small in comparison to AE(B). 

Lone pair geminal 

The correlation changes occurring In the LP-geminal in BH are more 

difficult to assess. The AE(LP) curve passes through a maximum near and 

then appears to pass through a minimum near R - 4.00 bohr. On the other 

hand, the Al(K,LP) curve seems to nearly offset the changes in AE(LP) so 

that the overall result is that the geminal correlation energy, Ae^p, is 

nearly constant. This Implies that it would have been possible to omit the 

lone pair SNO's as well as the K-shell SNO's for this case. The details of 

the structure of lone pairs and their effect on the total electronic struc

ture appear to need further Investigation. 

Spectroscopic Constants 

The spectroscopic constants for LIH and BH are calculated by using the 

procedure of Dunham (67). The potential curves are expanded in terms of the 

reduced coordinates p = (R - Rg)/Rg as 
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V =a^ p2(l + sa^ pk) , (93) 

and Dunham has given the relations between the spectroscopic constants and 

the expansion coefficients of Eq. 93. 

if a polynomiai of the type of Eq, 93 is fitted to theoretical curves 

such as those obtained here, the problem arises under which conditions the 

coefficients a are stable with regard to the choice of (l) the interval 

chosen for p, (2) the number of points used in this interval, and (3) the 

degree of the expansion polynomial which Is fitted. Because, for any given 

fixed value of R, the numerical minimization can never be complete, there 

exists a certain random scattering of the computed energies around that E(R) 

curve corresponding to mathematically perfect minimization at all points. 

Because of this scattering there is a maximum degree of the polynomial which 

can be meaningfully determined by a least mean square calculation within a 

finite interval, (Rj, Rg), no matter how many points are included in the 

fitting. Conversely, determination of a fourth degree fitting requires a 

minimum interval length. If the Interval length chosen is such that a 

higher degree polynomial can be determined, only then is It possible to 

investigate if a fourth order approximation is an adequate representation of 

E(R) in this interval. In any case, the number of points used In a least 

mean square fit should be considerably larger than the order of the polyno

mial to be found. 

Another consideration Is, however, essential for the present purpose. 

Since the aim is comparison with experimental data, the curve E(R) should be 

fitted over that Interval which is sampled by the first four to six vibra

tional levels, in as much as they are necessary to determine the 
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Since a number of points of the potential curve were obtained over a 

fairly wide interval by the method outlined in the preceding section, a 

least mean square program was used to determine polynomials of degree four 

through eight for four interval sizes including the minimum. The minimum 

point for each polynomial was determined by finding the value of R for 

which the linear term vanishes. This minimum was used rather than insert

ing the actual minimum of the APSG potential curve so that points near it 

could be used without convergence problems. (The difference between the 

two is only ~ 10 ^ bohr). The coefficients of polynomials of the fifth, 

sixth, and seventh degree fitted to the LiH potential curve are given in 

Table 25. 

From Table 25 it is seen that the first and the second intervals are 

not sufficient. The coefficients for the two larger intervals appear to 

have settled down and agree to about two figures. Between the fifth and 

sixth degree polynomials the agreement is also about two figures for a^ and 

agf but only one figure for ajj similar considerations apply to the seventh 

degree polynomial. In LiH the fifth, sixth and seventh degree polynomials 

give stable coefficients. In the largest interval, in the sense that the 

higher order ones, a^..., are reasonably small. This is also the Interval 

which approximately corresponds to the first four vibrational energy levels. 
-q 

The root mean square deviation of these polynomials Is about 2 x 10 . 

Polynomials of higher degree give fluctuating large coefficients for the 

high order terms, which Is Indicative of random scattering of the energy 

values to which the polynomial Is being fitted. For BH the fourth, fifth 

and sixth degree polynomials In the Interval-R = 1.90 - 3.00 bohr give 
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stable coefficients, and have a root mean square deviation of approximately 

-4 
1 X 10 . Since the choice between stable polynomials seems arbitrary, 

averages over the fiftîi, sixth and seventh degree polynomials for LiH, and 

the fourth, fifth and sixth degree polynomials for BH, are tabulated. 

The resulting spectroscopic constants together with the experimental 

values (29,68) and percentage deviations are given In Table 26, The spec

troscopic constants, especially (U^x^, are sensitive indicators of the degree 

of agreement between the theoretical potential curve and the true potential 

curve, and the results obtained here are quite good. The results calculated 

from each polynomial for LiH showed less fluctuation about the averages than 

those for BH. This is not surprising since the potential curve for LiH was 

determined to a higher degree of optimization than the potential curve for 

BH. The largest fluctuations are in the anharmonicity term, (U^x^, and the 

closeness of the average value to the estimated value for BH must be 

interpreted with caution. 

It is possible to determine the expansion coefficients of Eq. 93 from 

the experimental spectroscopic constants and hence construct an "experimen

tal potential curve." For LiH Jorgensen and Crawford (68) have determined 

all the constants through a^, and for BH a^, a^ and a^ were determined from 

the data of Bauer, Herzberg and Johns (29). Using current values for the 

physical constants (69) and putting a^ in atomic units the two potential 

curves 

VLIH = 0.2995P^(1 - l.884p + 2.378p^ - 2.1f73p^) , (94) 

Vbh = 0.53I3P^0 - 2.II5P + 2.873P^) (95) 

are obtained from these sources. They are to be compared to the fifth and 
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fourth degree polynomials fitted to the APSG potential curves 

VL I H (APSG) = 0.3426p^(l - 2.409P + 4.332,% - 3.947p^) (: 

VB,^(APSG) = 0.8609p^(l - 2.647p + 4.038p^) . (: 

Graphs 7 and 8 plot the experimental and calculated potential curves of 

and BH, as well as their differences. 
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CONCLUSIONS 

General Effectiveness of the Separated Pair Approximation 

The present investigation has shown that the separated pair model 

yields good wave functions for some systems but not for others. From the 

view point of the electron pair Interpretation of chemical structure one 

would have expected that the separated pair model would adequately and 

completely describe both LIH and BH. In fact, it works well for LiH but 

only partially for BH, Thus the applIeabiIity of the separated pair approx

imation appears to be more limited than previously realized. It has been 

shown that the inner shell electrons are in fact adequately described by 

the separated pair approximation. Valence shell correlations, however, are 

only incompletely accounted for if the atomic valence shell contains more 

than one electron pair. 

The shortcomings are of two types: 

1. The strong orthogonality constraint excludes the secondary 

natural orbitals from recovering correlation effects in more 

than one geminal. 

2. A single product of separated geminals neglects intershelI 

correlation. 

To assess the relative importance of these two shortcomings it must be kept 

in mind that even if the strong orthogonality constraint Is relaxed, a single 

product of pair functions is still limited in the type of double excitations 

that can be constructed. As has been shown by Bender and Davidson (70) in a 

CI-NO calculation of FH, a large part of the correlation is recovered from 

split-shell excitations of intershelI character which cannot be obtained with 



www.manaraa.com

64 

a simple product of pair functions. It thus appears that the second limita

tion will prove to be the more serious one. One possible way of describing 

intershelI correlations, which allows one to remain within the pair function 

framework, Is by the splIt-geminal excitations of the augmented separated 

pair approximation (71,72). 

K-geminals 

The application of the separated pair approximation to Li, LiH, B, and 

BH has shown fchat the K-shêll âcfcs as à Separated pair, aild î # well described 

within the context of the separated pair approximation. Moreover, It has 

been quantitatively shown that the K-shell pair is little affected by changes 

occurring in the valence shell, and therefore the detailed correlation struc

ture of the inner shell can be omitted in the calculation of differences 

between molecular and atomic properties. The inner shell in the molecule Is 

even less sensitive to small changes in internuclear distance. In fact, the 

inner shell of BH is less affected by changes in R than the inner shell of 

LiH. 

The source for the decrease in the K-geminal correlation in BH as 

compared to that in B needs further investigation. Perhaps this problem can 

be overcome by a more general pair formulation; on the other hand the rela

tive change of the K-shell correlation between them may be less in systems 

where the L-shells of both the molecule and the separated atom are highly 

populated. 

Determination of APSG Wave Functions for Other Systems 

Through the analysis of the present calculations it can be concluded 

that the effectiveness of the separated pair approximation in a specific 
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case can be determined with a relatively small computational effort. Since 

the bulk of the correlation is recovered by two or three secondary NO's in 

each geminal, the energy and other properties calculated from a wave func

tion which includes only these NO's will be nearly as good as the energy 

calculated from a wave function containing a much larger number of natural 

orbitals. This is illustrated in LtH where a wave function expanded in 

terms of the basis given in Table 1, but including only the first four 

natural orbitals of each geminal given in the structure diagrams of 6o, 

yields an energy of -8.04956 hartree. This is only 0.00462 hartree higher 

than the energy obtained from the total wave function. The time needed to 

compute the energy for this wave function is 40% less than the time needed 

for the total wave function, and the time taken to calculate the geminal 

matrix elements after the atomic integrals have been calculated is only 40% 

as long as in the total wave function. It therefore seems reasonable to 

construct wave functions expanded in terms of the PNC s and one or two 

secondary NO's in each geminal, which can then be analyzed to determine 

whether substantial correlation has been recovered. Such wave functions 

require little computing time for their optimization. In this way it would 

be possible to rapidly survey a large number of systems to determine if the 

separated pair model can be fruitfully applied to them. 

Determination of Approximate Potential Curves 

The results which have been obtained from the approximate potential 

curves show that the method will give good qualitative results, and It 

appears that with some additional refinements satisfactory quantitative 

results can also be obtained. The principal benefit gained from this method 
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îs that many points of a potential curve can be determined for many-

parameter wave functions without an Inordinately large amount of computer 

time. 

The main difficulty encountered In the procedure Is matching up the 

potential curve at the end points of each succeeding segment. In order that 

the segments are properly matched, the wave function must be carefully opti

mized to the same degree of accuracy at each value of R where the energy is 

minimized. Experience indicates that the APSG wave function is more sensi

tive to variations In the orbital exponents than the HF-SCF wave function, 

and therefore it is essential that the wave function be reasonably optimized 

in all Its variation parameters if reliable quantitative results are to be 

obtained. An additional refinement Is that the parameters can be fitted 

to higher order Interpolation polynomials than the linear ones used here, 

which would help smooth out scattering due to slight differences in minimi

zation. 
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PART II. TWO-CENTER EXCHANGE INTEGRALS 

BETWEEN SLATER TYPE ATOMIC ORBITALS 
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INTRODUCTION 

Calculation of electronic wave functions for diatomic molecules can be 

made most effectively if Slater Type Atomic Orbitals are used as a basis 

set and, in spite of well known difficulties, it may well be that, In the 

long run, this type of expansion basis will also prove to be practical for 

polyatomic molecules. In two-center problems, there appear three types of 

electron repulsion integrals which present mathematical and computational 

difficulties: The coulomb; hybrid, and exchange integrals and, because 

efficient methods for their evaluation are essential, various workers have 

attacked the problem of general methods for their determination (73,74). 

For all three integral types, new methods were recently developed in this 

laboratory. While the analyses for the first two were published in previous 

papers (75,76), the present note deals with some new developments concern

ing the exchange integrals. 

The basis of the method is the analysis which had been given some time 

ago by one of the authors (77,78).- Jiere we introduce several new develop

ments which greatly increase the effectiveness of the procedure. A particu

larly useful improvement is an expansion of charge distributions between 

atomic orbitals in terms of products of powers and Legendre functions of the 

elliptic coordinates. General formulas are derived for the coefficients 

appearing in these expansions for the product of any two arbitrary Slater 

Type Atomic Orbitals. These and other modifications lead to considerable 

simplification. In particular for Implementation on an electronic computer. 
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GENERAL FORMULA FOR THE EXCHANGE INTEGRAL 

introduction of Neumann Expansion and Integration by Parts 

The electron Interaction integral under consideration is the two-

center exchange integral over arbitrary atomic orbital s 

I = JdV, JdVg n(l) n(2) rjj , (98) 

where the charge distribution functions 0 and Ô are two-center functions 

defined by 

0(1) = Xa%b ' ° XgXb ^ (99) 

and the Xj are atomic orbitals with origin at I. 

The integration is carried out in elliptic coordinates. '^ L; the 

radius vector of the electron from origin i, and R is the distance between 

the nuclei, these coordinates are defined by the relations 

Tg = ]R(§+T1) = -jRd-Tl) 

Zg = ^(i+m) 2^ " ̂ (i-w 

(100) 

(X^ + - (xg + = i Rd 

dV = (^)^(Ç^-Tl^)d|dTldtp 

where r. is the magnitude of £. and x., y., and z. are its components in 

cartesian coordinates. It Is assumed that the axis points from atom a 

to atom b whereas the z^ axis points from atom b to atom a, and that the 

Xgf yg axes are parallel to the Xy, y^ axes respectively. For the inverse 

distance (l/rig); the Neumann expansion (77) yields the following expres

sion in elliptic coordinates 
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(i/r,3) = m )  4"'«2' 

(101) 

ytm(Tl2'92) 

where §j < gg; and |j,§2 must be interchanged in the product PQ, if §j > 

The are the Legendre functions of the second kind, and the are the 

Legendre functions of the first kind (47). The real spherical harmonics, 

are taken to be 

ytmfl'") fW [«"«mo»'''" (102) 

where the definitions 

p"(1) - (103) 

pj"' (Tfl - (d/dtl)" P^(T|) 

are used for the Legendre functions, and f(m) Is defined as 

cos |m| cp If m > 0 

sin ml ID if m < 0 

(103') 

Introduction of the Neumann expansion Into I yields 

"v m I 

J 
J", "Y 

(104) 

where the second term in brackets has been obtained by an Interchange in 

the order of Integration. The functions are found from Eqs. 100 and 
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101 to be 

n(§,Tl,«p) . (105) 

Since the total bracket term In Eq. I04 Is of the form 

f(x)dg(x) + g(x)df(x) = d[f(x)g(x)] , (106) 

the integral I can be written as 

(t- m )J 
m )i jtf {§)/?!'"'(§)] 1  =  Z  ( - ! ) '  

I m  

df [/ àx P W (x) n^^(x) /dy pj""! (y) %(y) , 

(107) 

and then Integrated by parts, the integrated part vanishing (78). Making 

use of the relation 

QP' - PQ.' = (108) 

for the Wronskian of Q and P, I is reduced to the form 

' =/ r î^ji) (109) 
•0 m I 

where 

ftm ' pI"!(;)]-' / «x "'"k,) Otm(') (""I 

with defined by Eq. 105. 

The principal_result of Eq. 109 is that the functions f^(g) can be 

evaluated separately and then combined In pairs to yield the Integrals I, 

as was pointed out previously (78). This results in a significant saving of 

computational effort since the number of f^ arising from a given basis set 

of atomic orbital s is very much smaller than the number of exchange 
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Integrals. 

introduction of Charge Distribution Expansions 

In order to evaluate the functions f^^(§) and obtain a general formula 

for the exchange Integral, It is assumed that the charge distributions of 

Eq. 99 are expanded in the following way: 

= S e-^W (T|,(p) (III) 
\mk A"" 

where are constants to be discussed later ôn» From Eqs. I05, 110, and 

111 one then obtains 

=  Z  [ ( 1 ^ - 1 ) / d x ( x ^ - l ) l ' " ' ^ ^ p j ' " l ( x ) ( x = l ) ^  .  

( J 1 2 )  

Using Rodrigues' formula for the Legendre functions one finds for m > 0, 

• (x2-l)"'/2p^(x) = -J- (x^-l)'"(d/dx)^"^(x^-l)^ 

' (113) 

(^+m)^ Im v+m 
- % 

where 

Cy*" =  ( H v ) ! / ( l ' v ) ! v !  (v+m).' 2^ 

(114) 

t = x-1 

and similarly 

(x2-l)'/2pm(x) = jyZGit t('+m)/2 (t+2)(l-m)/2 ^ c^ t^ . (115) 

Combining the results of Eqs. II3 and 115, and setting s=t/(5-l)=(x-l)/(|-l) 
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one obtains the result 

f, (I) . Z E (T+2)(m-')/2 t"-" 
-om k V tK V 

(116) 

V 
where 

and 

T = S-l (117) 

qj (2) = ds e s-^" . (118) 

Inserting the right hand side of Eq. I I 6  Into Eq. 109 for f^ and f^^, 

one obtains the following final formula for the exchange integral 

'%!o Wtm(T) <"5) 
^=0 m=-t 0 

where 

W;^(T) = e-%r('+m)/2 (T+2)(m-l)/2 ^ T\^(Q?r)b^/ z T'' (120) 

and 

n V V 

Vk^k/C-^U • ('") 

The summations over n, v, and k are limited by 

' kmin " S k^,, + t , 

maxf I"™*] 

(122) 

where l<_. and k are the limits of the summation over k in Eq. III. 
mm max 

These results depend on the form of Eq. Ill assumed for the charge dis

tribution. It remains to show that this Is Indeed the case for Slater Type 

Atomic Orbitals, and to derive general formulas for the coefficients 



www.manaraa.com

74 

CHARGE DISTRIBUTIONS BETWEEN SLATER TYPE ORBITALE 

Decomposition According to Irreducible Representations of 

Tlie charge distributions are chosen to be products of real Slater Type 

Atomic Orbital s (STAO's) which have the form 

X " Cn (123) 

where 

(n = . (,24) 

If the components of the radius vectors r.^ and r^ in Xg and Xy, originating 

from centers a and b respectively, are transformed to elliptic coordinates 

as in Eq. 100, the product can be written as 

ff*!™! fWf(n>')M{l+6^jj)(l+6||j,(j)]"^ (125) 

wi th 

G = 2*(Ca+Gb) P = iR(Ca-Cb) • ('26) 

From the relations between the trigonometric functions, one obtains, 

for the functions defined by Eq. 103', the relation 

2f(m)f(m') = Ps(l-6p _,6M o)f(pM)+) + f(pMj (12?) 

with the definitions 

p = slgn(m) sign(m') , s = sign(tiHin') , sign(O) s | ^ 

I , , (128) 
M+ = |m + m'l , M_ = |m - m'| 
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Using Eq. 127, the expression i25 can be rearranged in the form 

(§W) 0=ps(l-ôp^_,6^ o)f(pM)+) Wq ^ + f(pM_) Wq ^ (129) 

wi th 

where 

WqM = K d^^d"9(5,+%)9(5,"m)e"°S-PT| (I30) 

q+ = 0 ' 

q_ = minimum (|m|, |m'|) , (131) 

(132) 

r 2t+l 2't'+l /6\-l /-t+mx/-t-'+m'xIi/Z 
LTSTTTSTTTV (*') ( m '( m' 'J 

and the functions g are defined as 

g(5,Tl)=(?+Ti)"-^[-jj|^ PI"' (-!^)] . (133) 

Expansion of 

Expanding P^"'^(t) as (79,80) 

p W ( t )  ,  t  ( 1 3 4 )  
^ ihi v=o ^ 

and using algebraic identities such as 

(t+1) = (1+§T1)/(|+T1) + I = (§+l)(l+1l)/(§+1]) 

one finds by substitution and expansion in Eq. 133 

„ , t-m t-m 
d g(5,T|) = (l+n)"'^ E S (-')* "Si 

V=0 C»=v ^ 
(135) 
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with 

Expanding furthermore and interchanging summations in Eq, 135 one 

has 

d'" 9(1,11) = S ? rtd-D^+n-P+O 
p=l \=o P <' 

(137) 

M 2fl 
By virtue of these expansions, the product d d g(|,Tl)g(|,-Tl) contains 

2 M/2 0* o ̂ 
terms of the form (1-T] ) (i+Tj) (I-I]) , which in turn can be expanded in 

terms of the Legendre functions 0^(T1), the expansion coefficients being 

given by 

BLJI '= J ' cm ( 1 -if) (? Jcn) (i+'nr( i -n)''' 
-1 

= [^(J;)"' (L%")]'/2[2**''*"+'/(L+04o'+M+l)] (138) 

Substituting ttie resulting expressions for d^d g(Ç,11)9(1,-"n) in Eq. 1)0 

one finally obtains 

k=q 
(139) 

n+n ' M 
•E a, .(n&m;n't'm';q,M)(y ,(%) 

L=M 

where the coefficients are given by 
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'Lk - : : -, oc::!:' 

(140) 

* S / ,\r+r' \l _(p+r'-r-m+q), (p'+r-r'-m'+q) 
rr'l \mq *r'm'q 

The sum extends over all values of for which n+n'+q+X+\'-p-p'»k, 

with p,p',\,\' and r,r' limited by 

^ < p < n , t' < p' < n' 

0<X<^-m+q , 0 < X' <-t'-m'+q , (l4l) 

0 < r < X  ,  0  <  r '  < X '  

The constants K, A, and B are defined in Eqs. 132, 136, and 140. 

Expressions for the u)^|^ 

With the preceding results, the constants appearing in Eq. Ill can 

be evaluated. To this end Eq. Ill is inserted into Eq. 105, which yields 

= (§^-1)""/^ e"^ E (142) 

as an alternative definition for the 

Substituting now Eq. 129 into Eq. 105 and Integrating over cp one finds 

CltJI) = {'<"1 ̂  W \m 

(143) 

+ ^I'"! • 

The Integrals J'dT|^J^(Tl)Ô^|^('I)) e"^^ which occur in this equation, can be 
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evaluated with the help of the expansion theorem for spherical harmonics, 

and the relation (79,81,82) 

(?j(t) = (-1)^ [K(2J+l)/p]*/2 Ij+i/gfP) 

where the ^re modified Bessel functions. Thus, one finds 

/dTlG^L^Tl),(3)J(Tl) 6"^"^= [«(2L+l)(2t+l)/2p]'/2 

(144) 

^I ^2 
where the ( ^) are the Wigner 3-J symbols (81). Substitution of 

•"l ^2 3 
Eq. 139 and Eq. 144 in Eq. 143 yields in fact an expression of the type of 

Eq. 142. 

It is seen that the (u^j^ are different from zero only if m=pM^ orm=pM_, 

and these coefficients are found to be 

" i k '  GpM+,m + ^ "«m.o' 

a,, 
^ L=|m| Lk j=|L_t|,2 

(145) 

* L -m o)(o 0 o) 'j+l/2(P) 

where the constants a^^^ are given by Eq. l40. Consequently the summations 

over m in Eq. 119 contain only the terms and ±M_. 
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DISCUSSION 

Coefficient Matrices 

The Eqs. 129, 134, and 139 together yield expansions for the charge 

distributions in terms of products of the type 

f(pM+) 
(146) 

where the coefficients are characterized by the quantum numbers of the 

ôrbiîals In the charge distribution, and a symmetry designation, M. For 

example, the charge distribution made up from a Is function and a 2s func

tion is characterized by the label (ls,2s,Z*) (77). Since the matrices are 

determined completely when the quantum numbers have been specified, they 

can be evaluated once and for all, and stored in a convenient manner. 

From Eq. 138 It Is seen that the relation between charge distributions 

which differ only in that the centers have been interchanged is given by 

*Lk(%b'%a'9/4 = (-1)^"^ aLk(%a'%b'9/0 ' ('47) 

Reference to Eqs. 100, 133, and 140 further yields the result that if the 

quantum numbers from the two orbitals are related as 

n-t = n'-t' and t-m = t'-m' , (148) 

then 

aLk(%b'%a'4/0 = ^Lk^'^a'^b''^'^ ' ('49) 

and 

= 0 , if (L-M) odd . (150) 

The number of unique charge distribution matrices (a^^) which arise 
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for all combinations of orbital types from n=l to n=N, is found by noting 

t h a t  e a c h  c o m b i n a t i o n  I n  w h i c h  o n e  o r  b o t h  o f  t h e  m ' s  a r e  z e r o  g i v e s  r i s e  

to one charge distribution matrix, whereas if both m's are /O, two charge 

distribution matrices are formed. In this way one finds for the formula 

Ng = N(N+I) r{N(N+]) (2N^ + 2N + 5) + 6(2N+l)}3/72 . (I5l) 

Numerical Integration 

The final integration indicated in Eq. 119 is done by Gauss-Legendre 

quadrature (83) in terms of the integration variable a given by 

a = (T-1)/(T+1) , • (152) 

The numerical Integration Is carried out over enough points to Insure a 

minimum accuracy of six decimal places. The number of points, N|, needed 

for this accuracy Is given by the relation 

N, = O.75O0 -8ci!q + 33.25 (153) 

where 0!^ Is the smallest value of 2^(^a^^b^ ® 9'ven basis set. In 

addition the number of terms needed In the infinite series must be deter

m i n e d .  I t  I s  f o u n d  t o  b e  l e s s  t h a n  o r  e q u a l  t o  e l e v e n  t e r m s  f o r  a l l  

integrals Involving Is through 3d6 orbltals and the maximum, Is 

10 even In those cases where the lowest value l=f\ is different from zero. 

Once N| has been determined, the values of all the integrands 

are determined over the Integration grid for all charge distributions and 

stored. Then the Integrals are computed from two charge distributions at a 

t i m e .  T a b l e  2 7  g i v e s  t h e  t i m e  n e e d e d  t o  c o m p u t e  a l l  t h e  I n t e g r a l s  a r i s i n g  

from a given basis set. 
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Computation of Special Functions 

The functions qj(x) Introduced in Eq. 118 are computed as follows: 

The recursion formula 

X qj(x) = j qj_,(x) -e"* (154) 

wl th 

qQ(x) = (l-e )/x (155) 

may be used for ail x except in a region x<f(j) where too many figures are 

lost due to the subtraction In Eq. 154. In the latter region the Infinite 

series 

,jW - j! e-" (156) 

is used for the highest value of j needed, and the recurrence formula 154 

is then used in the downward direction. 

The maximum value of j is found from Eqs. Il6 and 139 to be 

Jmax = (157) 

where n,n' are the principal quantum numbers of the orbitals In the charge 

distribution. For all charge distributions including STAO's through 3d6, 

one has = 16. The exact form of f(j) is machine dependent. For an 

IBM series 36O computer using double precision arithmetic 

f(j) = 3(J+j/n) (158) 

Is sufficient to maintain eight significant figures in qj(x). For very 

large x the approximation 

qj(x) = ji/xj** (x>8l) (159) 
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îs sufficient. 

Tiie modified Bessel functions appearing in Eqs. 144 and 1^5 are 

evaluated by noting that they are related to the diagonal elements of the 

'op functions which have been discussed elsewhere (84). 



www.manaraa.com

1 

2 

3 

4 

5 

6. 

7. 

8, 

9. 

10. 

1 1 .  

12. 

13. 

83 

LITERATURE CITED 

Lewis, G. N. The atom and the molecule. J. Am. Chem. Soc. 38: 762. 
1916. 

Langmuir, I. The arrangement of electrons in atoms and molecules. 
J, Am. Chem. Soc. 4l: 868. 1919. 

Langmuir, I. Isomorphism, isosterism and covalence. J. Am. Chem. Soc. 
41: 1543. 1919. 

Hartree, D. R. The wave mechanics of an atom with a non-coulomb 
central field. I. Theory and methods. Cambridge Phil. Soc. Proc. 
24: 89. 1928. 

Hartree, D, R, The wave mechanics of an atom with a non-coulomb 
central field. II. Some results and discussion. Cambridge Phil. Soc. 
Proc. 24; 111. I928. 

Fock, V. Naherungsmethods zur Losung des quantenmechanlschen 
MehrkOrperproblems. Z. Physlk. 6I: 126. 1930. 

Roothaan, C. C. J. New developments in molecular orbital theory. 
Revs. Modern Phys, 23: 69. 1951. 

dementi, E. Ab initio computations In atoms and molecules. IBM J. of 
Res. and Development 9: 2. 1965. 

McLean, A. D. and Yoshimine, M. Computation of molecular properties 
and structure. IBM J. of Res. and Development ca. I968. 

Cade, P. E. and Huo, W. M. Electronic structure of diatomic molecules. 
VI. A. Hartree-Fock wave functions and energy quantities for the 
ground states of the first-row hydrides, AH. J. Chem. Phys. 47: 6l4. 
1967. 

Cade, P. E. and Huo, W. M. Electronic structure of diatomic molecules. 
VII. A. Hartree-Fock wave functions and energy quantities for the 
ground states of the second-row hydrides, AH. J. Chem. Phys. 47: 649. 
1967. 

Hurley, A. C. On orbital theories of molecular structure. Unpublished 
Ph.D. thesis. Cambridge, England, Library, Trinity College. 1952. 

Hurley, A. C., Lennard-Jones, Sir J., F. R. S., and Pop le, J. A, The 
molecular orbital theory of chemical valency. XVI. A theory of 
paired-electrons in polyatomic molecules. Roy. Soc. (London) Proc. 
A220: 446. 1953. 



www.manaraa.com

84 

14. LtJwdfn, P, 0. Quantum theory of many-particle systems. I. Physical 
interpretations by means of density matrices, natural spin-orbltals, 
and configuration Interaction. Phys. Rev, 97: 1474. 1955. 

15. Parks, J. M. and Parr, R. G. Theory of separated electron pairs. 
J. Chem. Phys. 28: 335; 1958. 

16. Csizmadia, 1. G., Sutcllffe, B. T., and Barnett, M. P. A group 
orbital study of lithium hydride. Can. J. of Chem. 42: I545. 1964. 

17. Ebbing, D, D. and Henderson, R. C. Study of separated electron pairs 
in the LiH molecule, J. Chem. Phys. 42: 2225. I965. 

18. Ebbing, D. D. Configuration interaction study of the lithium hydride 
molecule. J. Chem. Phys. 3^! 13^1. 1962. 

19. McWeeny, R. and Ohno, K. A. A quantum mechanical study of the water 
molecule. Roy. Soc. (London) Proc. A255: 367. I960. 

20. McWeeny, R. and Sutcllffe, B. T. The density matrix in many-electron 
quantum mechanics. Ill, Generalized product functions for beryllium 
and four-electron Ions. Roy, Soc. (London) Proc. A273: I03. 1963. 

21. Kutzelnigg, W. On the validity of the electron pair approximation for 
the beryllium ground state. Theoret. Chim, Acta 3: 241. 1965. 

22. Coleman, A. J. Structure of fermlon density matrices. II. Antl-
symmetrlzed geminal powers. J. Math. Phys. 6: 1425, I965. 

23. Miller, K, Electron correlation, palf approximation and augmented 
pair expansion. Application to beryllium-like atomic systems. 
Unpublished Ph.D. thesis, Ames, Iowa, Library, Iowa State University 
of Science and Technology. I966. 

24. Miller, K. and Ruedenberg, K. Electron correlation and separated pair 
approximation. An application to beryllium-like atomic systems. J, 
Chem. Phys. ça. I968. 

25. Silver, D. M. Quantum mechanics of diatomic molecules: Overlap 
integrals, coulomb Integrals, and ab-initio calculations on imidogen. 
Unpublished Ph.D. thesis, Ames, Iowa, Library, Iowa State University 
of Science and Technology. I968, 

26. Crawford, F, H, and Jorgensen, T.,Jr. The band spectra of the 
hydrides of lithium. Part 1. LIW)D. Phys. Rev. 47: 358. 1935. 

27. Crawford, F. H, and Jorgensen, T., Jr. The band spectra of the 
hydrides of lithium. Phys. Rev. 47: 932. 1935. 



www.manaraa.com

85 

28. Lochte-Holtgreverij W. and VIeagel, van der E. S. Uber eîn Bandenspek-
trum des Borhydrîdes. Z. Physîk. 70: 188. 1931. 

29. Bauer, S. H., Herzberg, G., and Johns, J. W. C. The absorption 
spectrum of BH and BD In the vacuum ultraviolet. J. Mol. Spectr. 13: 
256. 1964. 

30. Babcock, H. D. Chemical compounds in the sun. Astrophys. J, 102: 154. 
1945. 

31. Shull, H. Natural spin analysis of hydrogen molecule wave function. 
J. Chem. Phys. 30: l405. 1959. 

32. Lb'wdin, P. 0. Natural orbitals in the quantum theory of two-electron 
systems. Phys. Rev. 101: 1730. 1956. 

33.  Kutzelnigg, W. Die LBsung des quantenmechanischen zwei-elektronen-
problems durch unm!ttelbare Bestlmmung der naturlichen EInelektronen-
funktion. Theoret. chim. Acta 1: 327. I963. 

34. Kapuy, E. Density matrices for wave functions built up from non-
orthogonal two electron orbitals. Acta Phys. Hung. 10: 125. 1959. 

33.  Kapuy, E. Density matrices for wave functions built up from two 
electron orbitals. Acta Phys. Hung. II: 97. I960. 

36. Kapuy, E. Derivation of approximate two electron orbitals. Acta Phys. 
Hung. II: 409. i960. 

37.  Aral, T. Theorem on separability of electron pairs. J. Chem. Phys. 
33: 95. i960. 

38. Lowdin, P. 0. Note on the separability theorem for electron pairs. 
J. Chem. Phys. 35: 78. I96I. 

39. McWeeny, R. The density matrix in many-electron quantum mechanics. I. 
Generalized product functions. Factorization and physical interpreta
tion of the density matrices. Roy. Soc. (London) Proc. A253: 242. 
1959. 

40. McWeeny, R. Some recent advances in density matrix theory. Revs. 
Modern Phys. 32: 335. I960. 

41. Born, M. and Oppenheimer, J. R. Zur Quantentheorie der Molekeln. 
Am. PhysIk. 84: 457. 1927. 



www.manaraa.com

86 

42. Kutzelnigg, W. Direct determination of natural orbltals and natural 
expansion coefficients of many-electron wave functions, I, Natural 
orbltals in the geminal product approximation. J. Chem. Phys. 40: 
3640. 1964. 

43» Kapuy, E» An exact derivation of orthogonal two electron orbitals. 
Acta Phys. Hung. 12: 185. I960, 

44. Rafenettij R. and Ruedenberg> K» Parametrizatlon of N-dlmenslonal 
orthogonal matrices. Unpublished paper. Ames, Iowa, Department of 
Chemistry, Iowa State University of Science and Technology, ça. 1968, 

45. LSwdin, P. 0, Quantum theory of cohesive properties of solids. Phil. 
Mag. Supplement 5: I. 1956. 

46. Powell, M. J. D. An efficient method for finding the minimum of a 
function of several variables without calculating derivatives. 
Computer J. 7: 155. 1964. 

47. Jahnke, F. and Emde, E, Tables of functions. New York, N.Y., Dover 
Publications. 1945. 

48. Kutzelnigg, W. Uber die Symmetrie-Eigenschaften der reduzierten 
Oichtematrizers und der naturlichen Spin-Orbitale und Spin-Gemlnale 
(der naturlichen Eln-und Zwei-Elektronen-Funktion). Z. Naturforschg. 
18a: 1058. 1963. 

49. Mulliken, R. S. Interpretation of band spectra: Part III. Revs. 
Modern Phys. 4: 1. 1932. 

50. Allen, T. L. and Shull, H. The chemical bond in molecular quantum 
mechanics. J. Chem. Phys. 35: 1644. 1961. 

51. Bader, R. F. W. and Henneker, W, A. The nature of the chemical bond 
in lithium hydride and hydrogen fluoride. J. Am. Chem. Soc. 88: 280. 
1966. 

52. dementi, E. Tables of atomic functions. Supplement. J. of Res. and 
Development 9: I. 1965. 

53. Edmlston, C. K. and Ruedenberg, K. Localized atomic and molecular 
orbitals. Revs. Modern Phys. 35: 457. 1963. 

54. Edmlston, 0. K. and Ruedenberg, K. Localized atomic and molecular 
orbltals. II. J. Chem. Phys. 43: S97* 1965. 

55. Bender, C. F. and Davidson, E. R. A natural orbital based energy 
calculation for HeH and LiH. J. Phys. Chem. 70: 2675. 1966. 



www.manaraa.com

87 

56. Brown, R. A configuration interaction study of the states of the 
LiH molecule. Unpublished Ph.D. thesis. Bloomington, Indiana, 
Library, Indiana University. 1967. 

57» Brown, J. C. and Matsen, F. A, Quantum mechanical calculations for 
the electric field gradients and other electronic properties of 
lithium hydride: The use of mixed orbital sets. Phys. Rev. 135: 
A1227. 1964. 

58. Harris, F. E. and Taylor, H. S. A quantum mechanical study of the LiH 
molecule in the ground state. Physica. 30: 105. 1964. 

59. Stevens, R. M. and Lipscomb, W. N. Perturbed Hartree-Fock calcula
tions. v. Magnetic properties of the BH molecule, J. Chem. Phys. 
42: 3666. 1965. 

60» Hegstrom, R, A» and Lipscomb, W. N. Magnetic properties of the BH 
molecule. J. Chem. Phys. 45: 2378. I966. 

61. Harrison, J. F. The electronic structure and properties of BH, NH, 
FH, and CH2 in their ground and excited states. Unpublished Ph.D. 
thesis. Princeton, New Jersey, Library, Princeton University. 1967. 

62. Ohno, K. On the electronic structure of the BH molecule. J. Phys. 
Soc. Japan. 12: 938. 1957. 

63. Kaufmann, J. J. and Burnelle, L. A, An SCF wave function for BH. 
Research Institute for Advanced Studies Technical Report 65: II. 
1967. 

64. Tuan, D. F. and Sinanoglu, 0. Many-electron theory of atoms and 
molecules. IV. Be atom and its ions. J. Chem. Phys. 4l: 2677. 1964. 

65. Coulson, C. A. and Fischer, I. Notes on the molecular orbital 
treatment of the hydrogen molecule. Phil. Mag. 40: 386. 1949. 

66. Davidson, E. R. and Jones, L. L. Correlation splitting in the 
hydrogen molecule. J. Chem. Phys. 37: I918, I962. 

67. Dunham, J. L. The energy levels of a rotating vibrator. Phys. Rev. 
41: 721. 1932. 

68. Crawford, F. H. and Jorgensen, T., Jr. The band spectra of the 
hydrides of lithium. Part III. Potential curves and isotope relations. 
Phys. Rev. 49: 745. 1936. 

69. Herzberg, G. Molecular spectra and molecular structure. I. Spectra 
of diatomic molecules. 2nd ed. Princeton, New Jersey, D. Van Nostrand 
Company, Inc. 1950. 



www.manaraa.com

88 

70. Bender, C. F. and Davidson, E. R. Correlation energy and molecular 
properties of hydrogen fluoride, J. Chem. Phys, 4?: 36O. 1967. 

71. Miller, K. and Ruedenberg, K. Electron correlation and augmented 
separated pair expansion. Unpublished paper. Ames, Iowa, Department 
of Chemistry, Iowa State University of Science and Technology» ça, 
1966. 

72. Miller, K. and Ruedenberg, K. Electron correlation and augmented 
separated pair expansion in beryl Ilum-1 ike atomic systems. Unpub
lished paper. Ames, Iowa, Department of Chemistry, Iowa State 
University of Science and Technology, ça. 1966, 

73. Wahl, A, C., Cade, P. E., and Roothaan, C. C. J. Study of two center 
integrals useful in calculations on molecular structure. V. General 
methods for diatomic integrals applicable to digital computers, 
J. Chem. Phys. 41: 2578. 1964. 

74. Harris, F. E. and Michels, H. H. The evaluation of molecular Integrals 
for slater type orb I ta Is. Unpublished paper. Stanford, California, 
Department of Chemistry, Stanford University, ça. I966. 

75. Silver, D. and Ruedenberg, K. Coulomb Integrals between slater type 
atomic orb 1 ta Is. J. Chem. Phys. ça. 1968. 

76. Christofferson, R. and Ruedenberg, K. The evaluation of two-center 
hybrid integrals over slater-type orbltals of arbitrary quantum 
number. J, Chem, Phys, ça. 1968, 

77. Ruedenberg, K. A study of two-center Integrals useful in calculation 
on molecular structure. II. The two-center exchange integral. 
J. Chem. Phys. 19: 1459. 1951. 

78. Ruedenberg, K. Two-center electron interaction energies, molecular 
orbitals in chemistry, physics, and biology. New York, N.Y., 
Academic Press, Inc. 1964. 

79. Ruedenberg, K., O-Ohata, K., and Wilson, D. Overlap Integrals between 
atomic orbitals, J. Math. Phys. 7' 539. 1966. 

80. Rainville, E. D, Special functions. New York, N.Y., The Macmillan 
Co. i960. 

81. Rotenberg, M,, Blvins, R., Metropolis, N., and Wooten, J. K., Jr. The 
3-J and 6-J symbols, Cambridge, Massachusetts, Massachusetts 
Institute of Technology Press. 1959. 

82. Watson, G. N. Bessel functions. London, England, Cambridge University 
Press. 1944. 



www.manaraa.com

89 

83. Hildebrand, F. 6. Introduction to numerical analysis. New York, N.Y., 
McGraw-Hill. 1956. 

84. Silver, 0. and Ruedenberg, K, Atomic orbital overlap integral. 
J, Chem, Phys, ça, I968. 



www.manaraa.com

90 

ACKNOWLEDGMENTS 

The author would like to thank Professor Klaus Ruedenberg for his 

helpful discussions and guidance, and for suggestion of the work presented 

here. Special thanks go to David M. Silver with whom the author had many 

helpful discussions, and who shared in the difficulties and problems which 

arose during the course of this investigation. The use of his integral 

programs for the one- and two-center coulomb integrals, and the one-electron 

Integrals Is also appreciated. Thanks go to Ralph Ghristgfferson who made 

his two-center hybrid Integral program available for the computations. 

The consideration shown the author by the ISU computation staff in 

preparing the programs and running them is also deeply appreciated. 

Finally, thanks go to the many associates who provided helpful suggestions 

and made available some of their programs which were a great aid in 

bringing this work to a successful conclusion. 



www.manaraa.com

91 

APPENDIX A 



www.manaraa.com

92 

IN 

VARY ORBITAL EXPONENTS W 

COMPUTE ATOMIC INTEGRALS 

VARY ROTATION MATRIX ANGLES {-

COMPUTE MOLECULAR INTEGRALS 

CALCULATE MATRIX ELEMENTS 

and 

DETERMINE OCCUPATION COEFFICIENTS 

Eq. 23 

COMPUTE 

TOTAL ENERGY 

Eq. 22 

OUT 

FIGURE I. SCHEMATIC DIAGRAM OF LOGIC FLOW FOR DETERMINATION 
OF OPTIMAL APSG WAVE FUNCTION 
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TABLE 1. BASIS FUNCTIONS FOR LI AND.LIH 

LITHIUM LITHIUM HYDRIDE 

ORBITALS ORBITAL ORBITALS ORBITAL 
EXPONENTS EXP (R=3.015) 

KIS 2.44741 LI-KIS 2.48169 

K2S 3.19356 LI-K2S 3.29233 

K2H 4.24204 LI-K2Pa 4.09184 

LI-K2P* 4.21650 

K3P 4.66054 LI-K3P0 5.68493 

LI-K3PK 4.73995 

K3H 5.70550 LI-K3Dcr 5.71936 

LI-K3Dn 5.69243 

LI-K306 5.67957 

L2S 0.49152 LI-L2S 0.67828 

L3S 0.53297 LI-L3S 1.02091 

LI-L2Pa 0.75366 

LI-L2Pjt 0.76258 

H-IS 1.02951 

H-2S 1.13376 

H-2Pa 1.18804 

H-2P* 1.16849 

H-3Drt 1.45935 
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(ABLE 2. TRANSFORMATION MATRIX AND OCCUPATION 
COEFFICIENTS OF LITHIUM 

KlSl K2S2 LlSl 

KIS 1, 20110 -3. 13S09 -0. 17445 
K2S -c. 21171 3. 36868 -0. 00440 
L2S -0. OllGI — 0 . 15837 1. 90367 
L3S 0. 00756 -0. 01768 -0. 99065 

O.C. 0. 99871 -0. 02650 1. 00000 

K3P1 K4P2 

K2P 0,58489 -3.16509 
K3P 0.42740 3.19018 

O.C. -C.02420 -O.C0405 

K5D1 

K3U i.oooon 

O.C. -0,00381 
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FABLL- 3. TRANSFORMATION MATRIX AND OCCUPATION 
COEFFICIENTS OF LIH AT R = 3.015 BOHR 

2 Kiel K2oZ K4ct3 K8a4 K9cr5 
(KlSl) (K2S2) {SC3P1Î CK5D1) (K4P2) 

LI-KIS 1.18046 -3.28409 0,06427 -0.02563 0.03070 
LI-K2S -0.18782 3.46834 -0.08232 0.05680 -0.05530 
LÏ-K2P -0.00207 0.00032 0.69621 0.24335 -8.40608 
LI-K3P -0.00248 0.00936 0.33480 -0.23811 8.37892 
LI-K3D -0.00021 -0.00096 -0.00846 1.00096 0.02733 
LI-L2S 0.00498 0.06547 -0.19280 -0.11589 0.15093 
LI-L2P -0.01152 -0.20859 -0.42008 0.08111 0.22750 
LI-L3S -0.0154?, -0.21465 -0.04265 0.21330 -0.12555 
H-IS =0,00957 -0.01134 -0.09830 0.02962 0.02319 
H-2S 0.00276 0,14763 0.44003 -0.15814 -0.08944 
H-2P -0.00067 -0.03595 0.02786 -0.07459 0.09717 

O.C. 0.99883 -0.02463 -0.02158 -0.00383 -0.00142 

2 Biol B202 B4o3 85*4 68*5 B9a6 

I-KIS -0.11159 -0 .06425 -0.06640 0.08820 -C.54C80 -0.43C68 
1-K2S -0.00205 -0 .01589 -0.11964 -0.28318 1.10980 0.65767 
I-K2P 0.00353 -0 .00212 -0.00334 -0.00081 -0.04719 -0.02178 
I-K3P 0.0023U 0 .00575 -0.00101 —0.00963 0.01654 0.03482 
I-K3D 0.00050 0 .00025 0.00230 0.00132 -0.00179 -0.00244 
Ï-L2S 0.16953 0 .55051 -0.22159 -1.18359 -7.34995 0.91454 
I-L2P 0.21296 0 .58765 0.00971 -0.96281 0.72548 1.48596 
I-L3S 0.16863 0 .45787 -0.07519 -0.60934 7.98468 -0.52409 

H -IS 0.66120 -1 .47778 0.31235 -1.98857 0.12258 0.21325 
H -2S 0.02475 0 .42943 -0.22961 3.77949 -1.11643 -1.38849 
H -2P 0.02121 -0 .05818 1.05159 0.61603 -0.57099 -0.43310 

U .C. 0.98545 -0 .12319 -0.05695 -0.01232 -0.00198 -0.00094 
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TABLE 3. (CONTINUED) 

n K3rtl K5*2 K7rt3 B3rtl B6it2 B7«3 
(K3P1) (K4P2) (K501) 

LI-K2P 0.58208 -2.38791 -2.53682 0.00500 -C.00017 0.10783 
LI-K3P w.43340 2.41641 2.58840 -0.01358 -0.08327 -0.30859 
LI-K3D —O.00666 -0.72798 0.68593 0.00083 0.00506 0.04236 
LI-L2P -0.01686 -0.07911 -0.11449 0.06496 -0.00906 1.27397 
H-2P -0.05197 0.01168 0.00410 0.95237 -0.17731 -0.61469 
H-3D -0.01143 -0.00270 -0.05385 0.16284 0.99179 -0.46074 

O.C. -0.02411 -0.00386 -0,00383 -0,07104 -0.00947 -0.00482 

A K661 
(K5D1) 

LI-K3D 1.00000 

O.C. -0.00384 
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TAULE 4. OVERLAPS BETWEEN K-GEMINAL NATURAL CJRBITALS 
OF LI AND LIH AT R=3.015 BOHR 

LI LIH NO 
NO O.C. NO O.C. OVERLAP 

KISl 0.99871 Klffl 0.99883 0.99979 

K2S2 -0.02650 K2a2 -0.02463 0.97813 

K3P(Z)1 -0.02420 K4CT3 -C.02158 0.95816 

K3P(X)l -0.02420 KBrtl -0.02411 0.99791 

K4P(Z)2 -0.00405 K9g§ -0,00142 Q,37677 

K4P(X)2 -0.00405 K5rt2 -0.00386 0.98740 

) I —0.003fi1 K8ct4 - -0.00383 0.99799 

K5D(XZ)1 -0.00301 K7«3 -0.00383 0.99885 

K5D(X^-Y^)1 -0.00381 K661 -0.00384 0.99998 
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!ADLE 5. ENERGY RESULTS FOR LIH AND THE SEPARATED ATOM 

TOTAL ENERGY OF PRESENT CALCULATION AT R=3.015 BOHR 

LI+H LIH (LI+H)-LIH EV 

E(PNU) -7.93194 -7.98469 1.4353 
1-(PNG)-C(EXP) 0.046C6 0.08554 •1.0742 
E (PNO) - E (SCF) 0.00079 0.C02b2 •0.0498 
E(APS6' )* -7.93194 -8.C1823 2.3480 
E(APSG')-E(EXP) 0.04527 C.05227 •0.1905 
E(APSG) -7.96943 -8.05418 2.3060 
E(APS6)-E(EXP) 0.00857 0.01632 0.2100 
E(EXP) -7.9780 -8.0705 2.5169 

CORRELATION ENERGY RECOVERED BY PRESENT CALCULATION 

AE(CORR)=E(SCF)-E(EXP) Û.Ù4527 0.08319 
E(SCF)-E(APSG' ) -0.00079 0.03092 
PERCENT RECOVERED 37.17 
E(SCF)-H(APSG) 0.03670 0.06687 
PERCENT WECOVEKED 81.07 80.38 

OTHER CALCULATIONS 

E(SCF) 
£5+D: (CI-NO, R=3.015) 

-7.93273 -7.98731 1.4851 E(SCF) 
£5+D: (CI-NO, R=3.015) e -8.0606 e 
B+M (V3-CI, R-3.046) -7,9700 -8.0561 2,343 
83 (CI, R=3.060) e -8.0556 e 
H+T.h (VR-CI, R=3.2) -7.9574 -8.0387 2.212 
E+B' (APSG-NO, R=3. ;) e -8.0179 _e 

®APSG WITH CORRELATION K-NO S OMITTED 
°CLEMENTI REF. (52) 
^CADE AND HUO REF. (10) 
^BENDER AND DAVIDSON REF. (55) 
®LI+H WAS NOT CALCULATED 
^flROWN AND MATSEN REF. (57) 
9R. HROWN REF. (56) 
"HARRIS AND TAYLOR REF. (50) 
'EBBING AND HENDERSON REF. (17) 
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lABLf: 6. BASIS FUNCTIONS FOR B AND BH 

WORON BORON HYDRIDE 

DRBITALS OP.BÏTAL ORBITALS ORBITAL 
EXPONENTS EXP (R=2.329) 

Klo 4.23977 B-KIS 4.44380 

K2S 5.28416 B-K2S 5.55292 

K2P 6.96675 B-K2PCT 6.33261 

B-K2PK 6.39500 

B-K3Pa 6.24636 

B-K3DCI 8.49277 

L2S 1.27652 B-L2S 1.35277 

L2P 1.96288 8-L2PCT 1.96917 

B-L2PX 2.05102 

B-L3Pa 2.00045 

B=L3DG 2*24698 

L2S' 2.08748 B-L2S' 2.05631 

L2P' 0,96345 B-L2Pa' 0.91141 

8-L2Pit' 1.33187 

H-IS 1.24835 

H-2S 1.97523 

H-2P a 2.00664 

H-2P n 1.50634 
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TABLE 7. TRANSFORMATION MATRIX AND OCCUPATION 
COEFFICIENTS OF BORON 

KlSl K2S2 LPISI LP2S2 

KIS 1.21228 -2.86099 -0.02107 1.13008 
K2S -U.19022 3.21683 -0.04508 -2.09217 
L?S -0.16221 -0.20871 0.95108 -2.11668 
L2S' -0.03513 -0.12184 0.07766 2.86786 

(I.e. 0.99959 -0.01680 0.99995 -0.00499 

K3PI LP3P1 LlPl 

K2P 1.01600 0.48653 0.00567 
L2P -0.04231 -1.62190 0.27398 
L2P' -0.17596 1.29969 0.7B04C 

O.C. -0.01344 -0.00496 0.57735 
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FAfiLC 0. TRANSFORMATION MATRIX AND OCCUPATION 
COEFFICIENTS OF BH AT R = 2.329 BOHR 

S Klcrl K3eZ K4a3 K5e4 K6ff5 
(KISIJ (K3P1) (K2S2) 

A -KIS 1.10613 0.35058 -2.93794 0,03848 -0 .12210 
B -K2S -0.11572 -0.41124 3.73420 -0.05214 0 .16796 
H' -K2P 0.00009 1.16409 0.16919 0.00147 -2 .37934 
0 -K3P 0.001 «57 0.02119 -0.05853 -0.06240 3 .33303 
e--K30 -0.00015 0.02321 0.01077 0.98679 0 .00656 
m -L2S -0.01081 -0.06344 1.42154 0.07219 — 0 .12353 
li' -L2P 0.00368 -0.87173 -0.02559 0.09234 -1 .66332 
B--L3P -0.00339 0.03257 -0.02150 0.01221 0 .03590 
H--L3n 0.00048 -g.01072 -0,00920 0.05759 -0 .01722 
m--L2S' U.01150 0,09059 -2.04002 0.02932 -r .13666 
W-L2P' 0,00301 0.35345 0.07907 0.01969 .54402 
H--IS -0.00067 -0.21267 -0.29893 0.12028 -0 .27287 
II--23 -0.00052 0.23682 0.19869 -0.24439 0 .52619 
H--2P O.OOJ35 0.04172 0.02C23 =0.10766 r .34832 

U.C. 0.99969 -C.01181 -0.00968 -0.0C271 -0 .00264 

E LPlal LP3CT2 LP4C3 LP5ct4 LP6a5 

iv -KIS -0.20529 -0 .82166 0.15181 0.16336 0.06411 
» -K25 -0.)144G 0 .26487 -0.20729 -0.18981 -C.07884 
»v -K2P -0.00342 0 .01043 -0.04863 -0.09714 -1.02327 
IV -K3P 0.00304 0 .oon90 -0.06482 0.59978 3.22289 
iV -K30 !.. 00069 -0 .IV1363 -G.ul617 -0.35105 C.03013 
IV -L2S 1.00459 -2 .25689 -0.39206 1.38232 ft. 34045 
» •  -L2P -0.09005 -0 .09976 1.53306 -2.13993 -7.16247 
IV -L3P 0.01342 0 .07812 -0.09490 3.22428 8.07031 
IV -L3n -0.01059 0 .00973 0.05127 1.46601 -G.05750 
iV -L2S' -0.03924 2 .60107 0.35086 -0.18953 -0.00843 
(V -L2P' -'.26671 -0 .14159 -1.43702 -0.20807 -2.18820 
H -IS J.f'3923 0 .07945 0.61547 0.6202% 0.25970 
H--2S -0.02988 0 .19218 -0.21862 -2.43258 -0.72843 
H--2P 0.00829 -G .21422 -0.40793 -1.08379 -0.34577 

U .C. .97386 -0 .01595 -0.01018 -0.00235 -O.OOC86 
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I AO LI: e. (CONTINUKO) 

S i5i<n 8202 B4G3 B504 

H-•KIS -0.04804 0 .10041 -0. 30994 0. 04768 
,1-•K2S -0.01624 0 .U1719 n. 36497 0. 01533 
«- K2P 0.00443 -0 .00915 0. 16253 0. 00113 
Û -•K3P 0.00179 0 .01086 0. 12085 0. 02359 
B-•K3D -0.00139 0 .00777 -0. 01555 -0. 00045 
H-•L2S -0.05363 -0 .63379 —0. 62983 0. 27367 
ij-•L2P 0.21548 -0 .5^113 -0. 71241 -0. 19590 
B- L3P 0.05393 -0 .13245 0» 45606 0. 06172 
B-•L3D 0.03958 -0 .03810 0. 17430 0. 03692 
fi= L2S' 0.08135 =0 *10003 =0* 07662 -0, 31919 
a-L2P' 33367 -0 .49328 -0. 54035 -0. 08364 
H- IS 0.51777 0 .84820 0. 38953 -5. 18775 
H- 25 0.05440 0  .41126 0. 19245 5. 29632 
H- 2P C.02330 -0 .03423 1. 07235 0. 03784 

U. C. 0.99377 -0 .09615 -0. 02065 -0* 00492 

n  K2« i  
(K3P1) 

R-K2P 1.08657 
t$-L2P -0.21944 
li-L2P' -U.07750 
H-2P 02534 

LP2rtl 83*1 B6«l 

-0.01503 -0.60435 
0.25761 2.70184 

-0.60908 -2.30290 
1.11425 0.16136 

-0.00852 
0.07203 

-1.09135 
0.07856 

U.C. -0.01364 -0.16004 -0.03694 -0.00067 
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TABLE 9. OVERLAPS BETWEEN K-GEMINAL NATURAL DRBITALS 
(IF B AND BH AT R=2.329 HOHR 

n BH NO 
NO U.C. NO O.G. OVERLAP 

KlSl 0.99959 Kiel 0.99969 0.9849 

K2S2 -0.01680 K4a3 -0.00968 0.7604 

K3P(Z)1 -0.01344 K3C2 -C.01181 0.9C43 

K3P(X)1 -0.01344 K2al -0.01364 0.9935 
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TABLF 10. ENERGY RESULTS FOR BH AND THE SEPARATED ATOM 

TUTAL ENERGY OF PRESENT CALCULATION AT R=2.329 BOHR 

B+H BH (8 &H)=BH EV 

C(PMO) -25.0273 -25.1220 2.577 
E(PNW)~E(FXP) 0.1307 0.1680 -1. .'14 
E(PNO)-E(SCF) 0.0018 0.0094 -0.207 
E( APSG' )* -25.0281 -25.1790 4.106 
e(APSG')-E(EXP) 0.1299 O.lllC 0.514 
E(APSG" ) -25.0622 -25.2040 3.858 
E(APS6" )-E(EXP) 0.0958 0.0860 0.267 
E(AHSG) _b -25.2053 _b 
E(APSG)-E(EXPÎ =b 0.0847 Jb 
E(EXP) -25.1580 -25.290 3,592 

CORRELATION ENERGY RECOVERED BY PRESENT CALCULATION 

AE(CQRR)=E(SCF)-E(EXP) 0.1289 0.1586 
E(SCFI-E(APSG') -0.0010 0.0476 
PERCENT RECOVERED 30.01 
E(SCF)-E(APSG ) 0.0331 0.0726 
PERCENT RECOVERED 25.68 45.77 
E(SCF)-E(APSG) 0.0739 
PERCENT RECOVERED 46.60 

OTHER CALCULATIONS 

E(SCF) -25.0291^ -25.1314^ 2.784 
H® (CI, R=2.50) -25.1455 
K+B9 (SCF, R=2.336) _f -25.1298 _f 
0" (CI, R=2.329) -25.0289 -25.1105 2.22 

.APSG WITH CORRELATING K-NO S OMITTED 
''B+H WAVE FUNCTION WAS NOT DETERMINED FOR CORRESPONDING 

BH WAVE FUNCTION 
JCLEMENTI RL:F. (52) 
*CADE AND HUG REF. (10) 
^HARRISON REF. (61) 
fB+H WAVE FUNCTION WAS NOT DETERMINED 
9KAUFMANN AND BURNELLE REF. (63) 
"OHMU REF. (62) 
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TABLE 11. CORRELATION ANALYSIS FOR LI 

CONTRIBUTOR ORBITAL® ORDITAL^ TOTAL SEMINAL® GEMINAL^* 
INTERACTION CORRELATIONS CONTRIBUTIONS ENERGIES 

KlSltKlSl 
K1SI,K2S2 
K1S1,K3P1 
K1S1,K4P2 
KlSl,K5in 

KISl 
K,OrHFR 

K 

L1S1,L1S1 

KISI.LISI 

AI(K,L) 

6E 

K 

•0,0118?. 
•0.02090 
•Q.00222 
-0.00245 

•0.03739 
•n.00010 

0.00000 

•0.03749 

-7.23604 

-Os03749 

-O.B2037 

0.62447 

0.00000 

-7.46943 

-6.61157 

-0=U3749 

•0.19591 

^QUANTITY DEFINED BY EQ. 79 
^QUANTIFY DEFINED BY EQ. 85 
^QUANTITY DEFINED UY EOS. 76, 77 AND 78 
dpUANTITY DEFINED BY EQ. 81 

o 
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fABLF. 12. CORRELATION ANALYSIS FOR LIH (R=3.015) 

coNTRinurniî URHITAL* 
INTERACTION 

ORBITAL^ TOTAL GEMINAL® GEMINAL*' 
CORRELATIONS CONTRIBUTIONS ENERGIES 

Kiel 
Klal 
KICTI 
Klal 
KlCTl 
KlCTl 
Klcrl 
KlCTl 
Klal 

tKlal 
,K2a2 
,K4a3 
,K8a4 
,K9a5 
,K3«1 
,K5it2 
,K7«3 
,K661 

Klffl 
K,OTHERS 

K 

lUal 
Biai 
Ulal 
Blal 
Bid 
Bl*! 
Bl*l 
mioi 
Bin 

,lUai 
,02*2 
,BW3 
,8594 

,B9CT6 
,B3«1 
,R6«2 
,87*3 

-0.01120 
-0.00645 
"0.00050 
-0 .00021 
-0.01394 
-0.0^122 
• 0 , 0 0 1 2 2  
-0.00100 

-0.01424 
-U.C04?3 
.0 .00066 
• o . D o n o i  
-O.OOÛOG 
'0.ni226 
-0.00058 
'C.000'07 

-7.89569 -6.54489 

•0.03582 
•O.OC007 

-0.03589 -0.G385? 

-2.43482 -I.0B403 

QUANTITY DEFINED BY EQ. 79 
•QUANTITY DEFINED BY EQ. 85 
(QUANTITY DEFINED BY HQS. 76, 77 AND 78 
^QUANTITY DEFINED RY EQ. 81 
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TABLE 12. (CtlNTINIJED) 

CDNTRIBUrrm ORBITAL ORBITAL TOTAL (JEMINAL GBMINAL 
INTERACTION CORRELATIONS CONTRIBUTIONS ENERGIES 

-0.03261 
+0,00099 

U4a3 +0.00016 
H.3itl +0.00044 
%,OTHERS +0.00006 

\\ -0.03096 -0.(3360 

KloliGlal 1,35079 
KlGl,B2a2 -0.00149 
Klal,B3jt2 -0.00078 
UTHCRS -0.00037 

Al(K,0) -0.00263 -0.C0263 

AE -0.06954 

V: -8.J5418 
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lABLÇ 13. CORRELATION ANALYSIS FOR BORON 

CONTRIBUTOR ORBITAL® 
INTERACTION 

ORBITAL'^ TOTAL GEMINAf GEMINAJ* 
CORRELATIONS CONTRIBUTIONS ENERGIES 

KISltKlSL 
KISI,K2S2 
KlSlflOPl 

KlSl 
K,OTHERS 

K 

LP1SI,LP1S1 
LPlSl»Lf'2S?. 
LP1S1|LI'3P1 

LPISI 
LPiUTHERS 

LP 

LlPlfLlPl 

KlSlfLPlSl 

AI<K,LP) 

KISULIPI 

6I(K,L) 

LPlSltLlPI 

AKLPtL) 

TOTAL I 

ûf: 

.0.31268 
-0.02136 

-0.00000 

•o .ooczy  
•0. no or) 7 

-0.03405 

-0.00085 
-0.00006 

+0.00005 

-0.00001 

0.00000 

-0.03492 

-21.52C53 -17.86940 

-0.034C5 -0.03402 

-5U7363 -1*91269 

•0.00091 -C.C0G8& 

•2.27056 -0.30775 

2.47463 

1.17650 

0.78631 

0.000C4 

I- -24.5622 

fbUANTITY DEFIiMEO PY EQ. 79 
°OUANTITY OEFTNED UY EQ. A5 
SjUAMTITY DEFINED DY EQS. 76, 77 AND 78 
dqUANTIFY DEFINED UY EQ. 01 
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TABLE 14. CORRELATION ANALYSIS FUR BH (R=2.329) 

C ON r iu  BUTOR URBIfAL® 
INTERACTION 

ORBITAL'' TOTAL GEMINAL^ GEMINAL^ 
CORRELATIONS CONTRIBUTIONS ENERGIES 

Kie i ,K la i  
K1ct I ,K3ct? 
Kiai,K4at 
Kiei,K5a4 
Kial,K6G5 
Kie i ,K2* l  

Klol 
K,OTHERS 

-0.0056 
-0.0055 
-o.oujy 
-0.00Ù5 
•0.  0130 

-22.8443 -18.2303 

-0.0260 
+0 .0000 

K 

LPia l ,LPm 
LPlCTl ,LP3a2 -0 .  C012 
LPlCTl ,LP4a3 -0 .  0003 
LPlo l ,LP5a4 —0. 0000 
LPia l ,LP6a5 -0 .  oouo 
LPlo i ,LP2%l -0 .  03C2 

LPlo i  

LP2«l ,LPia i  —0 •  0302 
LP2«1,LP2«1 +0.  0143 
LP2«l ,OTHERS +0.  0C16 

LP2«1 
LP,OTHERS 

LP 

S la l ,B la l  
Bla i rB2b2 -0 .  0138 
Bla l ,B4o3 -0 .  0022 
lUal ,B5o4 -0 .  00)3 
Ria l ,83*1 —<).  0067 
Bla l ,U6«2 -0 .  0000 

-0,0259 -0.0196 

•5.3071 -1.4113 

-0.0318 

-0.0142 
-0.0005 

-0.0465 

-5.1179 

-0.C329 

-1.6275 

'QUANTITY DEFINED 'W EQ. 79 
'QUANTITY DEFINT-D H Y CO. 05 
:QUANTITY DEFINED IW EQS. 76, 77 AND 78 
'QUANTITY DEFINED BY EQ. 81 
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T A B L E  1 4 .  ( C O N T I N U E D )  

CONTRIBUTOR ORBITAL 
INTERACTION 

ORBITAL TOTAL GEMINAL GEMINAL 
CORRELATIONS CONTRIBUTIONS ENERGIES 

HCTJ. -0.0232 

02o2,nici 
H2a2,n2e2 
B202,OTHERS 

1:2 cz 
iî3«l 
H,OTHERS 

15 

KlalrLPIcri 

Kloi,LP2«l 
OTHERS 

Al(K,LP) 

Kiel,Dial 
K1C1,B2P2 
Kl^l B3Jtl 
OTHERS 

AI(K,B) 
LP1C1,B101 
LPIC 1,02*2 
LPl<Jl,R3jt 1 
LP2«l,Blal 
OTHERS 

AKLP.B) 

TOTAL A; 

A E  

-0.013% 
+0.0000 
+o,noo5 

0,0037 
0.0005 

+0.0039 
-0.0C17 
-0.0000 

+0.0012 
-0.000b 
+0.0006 
+0.0001 

-0.0054 
+0.0022 
+O.QCOO 

+0.0042 

+0.0021 

+0.0095 

-0.0831 

•0.0263 

2.5097 

-0.C146 

2.1043 

1.3861 

+0.J158 

-25.2053 
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TABLE 15. ORBITAL EXPONENTS FOR THE APS6 WAVE 
FUNCTION OF LIH AS A FUNCTION OF R 

URRHALS ORBITAL 
EXPONENTS 

K = 2.00 R =-3.. 015 R = 

LI-KIS 2.47066 2,48169 2.46973 

LI-K2S 3.29233 3.29233 3.21359 

LI-K2PC 4,09384 4,09184 4.C347Q 

LI-K2PW 4.26156 4.21650 4.26061 

LI-K3PCT 5.67795 5.68493 S.5W527 

LI-!<3P« 4.76716 4.73995 5.70326 

LI-K3l)a 5.G4102 5.71936 4.9)79? 

LI-K3Dn 5.65041 5.69243 5.60553 

LI-K3D6 5.67957 5.67957 5.6^025 

LI-L2S (.'.60950 0.67828 0.63774 

LI-L3S l.r.i435 1.02091 i ,c:-'8ic 

LI-L2PO 0.77678 0.75366 0.68099 

LI-L2P* C.83268 0.76258 0.74672 

H-IS 1.02733 1.02951 0.94576 

H-2S 1.14166 1.13376 1.C6624 

H-2P a 1.23243 1.18804 1.15064 

H-?P Jt 1.1H244 1.16049 1.C9741 

H-3n It 1.47935 1.45935 1.24187 
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TABLE 16. ORBITAL EXPONENTS FOR THE APSG WAVE 
FUNCTION OF BH AS A FUNCTION OF R 

ORBITALS ORBITAL 
EXPONENTS 

2.20 R = 2.329 R = 2.7C 

D-KIS 4.39679 4.44380 4.40669 

B-K2S 5.54900 5.55292 5.55394 

B-52Pa 6.34899 6.33261 6.24406 

6.46035 6.39500 6.43341 

B-K3Pa 6.26168 6.24836 6.26168 

8-K3DO n.51087 8.49277 0.51087 

B-L;s 1.32414 1.35277 1.36074 

Q-L2Pa 1%'»6304 1.96917 1.93446 

B-L2Pit 2.05253 2.05102 2.C7080 

B-LlPa 2.0J471 2.09045 2.00471 

B-L3Da 2.25177 2.24698 2.25177 

B-L2S' 2.37562 2.05631 2.C7564 

B-LZPo' 0.94039 0.91141 0.82329 

B-L2Pit' 1.34093 1.33187 1.37077 

H-IS 1.25839 1.24835 1.19805 

H-2S 1.97944 1.97523 1.95129 

H-2Pa 2.r2316 2.00664 1.92821 

H-2Pit 1.53939 1.50634 1.38736 
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T'lBLr: 17. TRANSFORMATION MATRIX AND OCCUPATION 
COEFFICIENTS OF LIH AT R = 2.80 BOHR 

Z Kiai K202 K4^3 K8cr4 K9CT5 

LI -KIS I. 18865 -3 .33789 0.06323 -0 .02812 C. 03649 
LI -K2S —C. 19514 3 .56649 -0.07668 0 .07026 -0. 07005 
LI -K%P -0. 00090 0 .01851 0.70030 0 .24397 -8. 40883 
LI -K3P — 0 » 00273 0 .00105 0.33392 -0 .23861 8. 37766 
LI -K30 -Û, 00003 0 .00080 -0.00815 I  .00109 0. 02647 
LI -L2S 0. 01174 -0 .07449 -0.28440 -0 .13150 0. 15133 
LI -L2P -0. •.1326 -0 .17197 -0.42840 0 .00642 0. 22133 
LI -L3S -Ù. 02759 -0 .03401 0.03113 c .23762 -c. 13305 
H-IS -u. 02156 0 .00090 -0.09579 0 .02304 Q. 03818 

2 S 00464 0 .07691 0.45137 -0 ,16651 = 0 » 08624 
H— 2P 0. 00U52 -0 .08952 -0.00259 -0 .08437 0. 11466 

U. n. 0, 99886 -0 .02418 -0.02146 -0 .00375 -0. 00144 

2 Rici R202 B4CT3 B5a4 R .8ct5 B9a6 

LI -KIS -0.11658 -0.08574 -0.09512 0 .11185 = 0. 65408 -0.42734 
LI -K2S 0.00252 0.03620 -0.13743 -0 .36234 1. 36951 0.68222 
LI -K2P 0.00330 0.01817 O.OU158 -0 .00936 -0. 07522 -0.02046 
LI -K3P 0.00370 -0.00951 -0.00247 -0 .00651 0. 03200 0.02631 
LI -K3n 0.00059 0.00310 0.01018 Q .00236 — 0. 00241 -0.00250 
LI -L2S .). 12101) 0.56015 -0.13005 -1 .25685 -p. 46795 C.99655 
LI -LJP 0.20803 0.64575 0.00259 -0 .98582 c. 72412 1.51056 
LI -L3S 0.19518 0.50637 -0.11264 -0 .63428 9. 07057 -0.56429 
II-IS .67544 -1.52485 0.31008 -1 .98889 0. 13237 0.19595 
II-?s 0.02071 0.39967 -0.23986 3 .90978 -1. 17245 -1.44968 
H-2P 0.03035 -0.07791 1.05691 0 .62210 -0. 44G17 -0.40168 

1). C. 3.98633 -0.11548 -0.05557 -0 .01250 -0. 00144 -0.00077 
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T A B L E  1 7 .  ( C O N T I N U E D )  

n K3*l KSit?  K7«3 83*1 B6Jt2 B7n3 

LI -K2P 0.55364 -3.43770 0.09509 -0.00533 0.03988 0.14147 
LI -K3P 1 .46604 3.49663 -0.08900 0.01552 -0.07618 -0 .38372 
LI -K3() -0.00439 0.02815 1.00126 0.C0133 -0.00130 0.02342 
LI -L2P -0.00829 -0.14945 0.02191 0.02350 O.C1280 1.34670 
H-2P -0.06855 0.0U387 -0.03176 0.97117 -0.18401 -'.64554 
H-3D 08703 -0.05299 -0.05056 0.16981 0.98393 -•). 53343 

(1. C. -C.023R4 -O.0O3HO -0.00387 -Û.07188 -G.01006 -0.00451 

A  K 6 6 I  

LI-K3D l.OOOOC 

O.C. -0.00385 
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TADLE IB. TRANSFORMATIUN MATRIX AND OCCUPATION 
CntFFICIENTS OF LIH AT R = 4.00 BOHR 

S Kl*! K2G2 K4e3 K8a4 K9C5' 

LI-Kls 1.18465 -3 .28950 0.01258 -0.03577 0 .06702 
LI-K2S -0.19557 3 .49022 -0.01314 0.04505 -0 .07408 
LÏ-K2P O.OOllO -0 .13295 0,68727 0.24911 — 8 .30391 
LÏ-K3P -0.0C597 0 .13446 0.33603 -0.22036 8 .28907 
LI-KBO -1.00031 -0 .00848 -0.03151 0.99921 0 .02961 
LI-LZS 0.00254 u .21535 -0.07575 -0.03242 0 .10863 
LI-L2P -0.0019? -0 .25895 -0.35766 0.06198 0 .23558 
LI-L3S -0.00157 -0 .41987 -0.07914 0.10747 -0 .04166 
H-IS 0.01717 -0 .05792 -0.1072H 0.04073 c .02885 
H-2S 0. 001)00 T.1 ,25885 0.35588 -0.12450 -u .15064 
H-2P 0.00104 Ù  .05873 0,06646 -0.08226 0 .00840 

O.C. 0.99896 - 0  .02432 -0.02201 -0.00429 -0 .00151 

S niCTi 82*2 84*3 B5C4 R8CT5 B9CT6 

LI-KIS -0.12548 =•0.09985 -0 .09111 0 «04068 -0.32891 -0.41820 
LI-K2S 0.01139 -0,02819 0 .03890 -0 .03470 0.50987 0.51620 
LI-K2P 11.00478 -0.02 '31 0 .04054 0 .06369 -0.07379 -0.04275 
LI-K3P -u.00113 0.02G05 -0 .02699 -0 .05892 0.07530 0.06327 
LI-K3n 0.00003 -0.00696 0 .02345 0 .01353 -0.01C68 -n.01136 
LI-L2S 0.19727 0.52979 — 0 .29174 -1 .11411 -4.07423 0.99335 
LI-L2P 18832 0.40172 -0 .14564 -0 .69574 0.42458 1.34194 
LI-L3S C.18008 0.32581 -0 .07074 -0 .18347 5.14225 - .83254 
H-IS 0.69968 -1.42201 0 .46287 -2 .07363 0.04C65 0.29356 
H-2S 0.00030 • .60736 -0 .30754 3 .27378 -0.39708 -1.13927 
H-2P J.C1332 0.0 3376 1 .05236 0 .51782 -0.51027 -0.32000 

'I.e. 0.97977 -0.16663 -0 .05405 -0 .01315 -0.00307 -0.00123 
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T A B L E  1 8 .  ( C O N T I N U E D )  

n K3itl K5*Z K7X3 B3itl 96*2 R7Jt3 

L1 -K2P 0.97575 -7.49013 0.01567 0.02235 -0.24865 0.06881 
L1 -K%P 0.03 UM 7.53463 -0.00995 -0.02101 0.26219 -0.22993 
LI -K3W -0.0065.' 0.C0141 1.00017 0.00021 C.00113 i, '.00213 
LI -L,?.P -0.04131 C:. 11471 0.00835 0.11306 -0.25340 1.13327 
II- 2 l>  -U.C2215 -0.01960 -0.00887 0.92961 -0 .13096 -0.50775 
H-31)  -0.0045a -0.04060 -0.02097 0.19642 1.04667 -C.2,V680 

0. C. -U.02145 -0.00165 -0.00391 -0.C6700 -0.00895 -0.00497 

A K661 

LI-K3D I.OOODO 

O.C. -0.00391 
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FABLE 19. TRANSFORMATION MATRIX AND OCCUPATION 
COEFFICIENTS OF BH AT R = 2.20 BOHR 

S Kiel K3CT2 K403 K5ff4 K6CT5 

n -KIS 1.12539 0 .35303 -3 .00802 0 .04284 — 0. 13420 
n -K2S -0.13121 -G .41226 3 *79935 -0 •05686 0. 18550 
r.i -K2P -C.00024 1 .13914 0 .16509 0 .00320 -2. 38175 
i', -K3P .00342 0 .02796 -0 .05299 -0 .06646 3. 33206 
B' -K30 -0.0003C 0 .02506 0 .01519 0 .98585 0. 01C79 
M' -L2S -0.01312 — '•J .07992 1 .27858 0 .08272 -0. 15603 
0 '  -L2P -0.00160 -0 .88767 -0 .01733 0 .10098 -1. 67504 
ÏV -L3P !.00373 0 .03691 -0 .08552 0 .02275 -0. 06757 
R--L3D 0.00155 -0 .02493 -0  .03675 0 ,06588 -C» 05021 
H' -L2S' 0.00312 0 =07441 "1 =93413 0 e04279 -0. 18905 
n--L2P' 0.00125 0 .38422 0 .08598 0 .02074 0. 59368 
H -IS -u.OOUDS -0  .20184 -0 .28207 0 .11598 -u .  23997 
H--25 -G.00365 0 .28719 0 .25284 -0 .26722 c .  59818 
H-2P -0.00128 0 .07323 • 0 .07339 -0 .12209 0.  39672 

0, .C. 0.99970 -0 .01179 -0 .00951 -0 .00271 -0. 00263 

S LPlal LP3e2 LP4C3 LP5cr4 LP6cr5 

0  -KIS -0.19849 0. 87892 .0. 18654 0 .19607 0 .06931 
U -K2S -0.01454 0.  33327 -0. 24740 -0 .23372 -0 .08690 
H' -K2P -0.00311 0. 02782 -0. 06571 -0 .08167 -1 .03365 
B -K3P 0.01286 0 .  Oi t  90 -0. 03474 0 .57271 3 .2689? 
B -K3n 0.00041 -0. 00648 -0. 02669 -0 .36075 0 .03899 
H -L2S •.:.9699C -2. 5216 -0. 31788 1 .46227 0 .32191 
IV -L2P -'.13157 -0.  130 56 1. 46897 -2 .18257 -7 .35229 
IV -L3P C.^9521 u .  12266 0. 13732 3 .44997 8 .46228 
H -130 -C.00468 0. 03252 0. 09585 1 .55088 -0 .05490 
B--L2S' 0.00022 2. 43296 0. 39877 -0 .01130 0 .03816 
IV -L2P' -0.31934 - [ ) .  12457 -1. 53360 -0 .18762 -2 .36823 
H--IS -0.04123 0. 05427 0. 55519 0 .51897 0 .23133 
II -,?.S 0.00907 0. 15079 — 0. 28460 -2 .63560 -0 .74675 
|.|. -2P 0.03997 -0. 26932 -0 .  61910 -1 .14162 -C .30360 

O.C. 0.97426 -0.01318 -0.00820 -0.00241 -C.00C85 
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I  A B L E  1 9 .  ( C O N T I N U E D )  

z fUCr i  0202 B403 B5CT4 

n-Kl% -0.05469 0 .1:974 -0.30971 0.00349 
1 j-•K2S -0.01574 0 .01638 0,36179 0.07707 
1^-•K2P 0.00326 -0 .02911 J.13972 0.02192 
1',-•K3P 0.00528 0 .01616 0.14292 0.05387 
H-•K30 -0.00073 0 .02208 -0.01337 -0.00223 
n-L2S -0.07670 -0 .64537 -0.75611 0.07337 
:A- L2P f.22753 .48104 -0.64879 -0.38015 
B-L3P 0.02998 -0 .32816 0,45737 0.12342 
li-1.30 0.03131 -0 .13306 0,13789 0.04229 
H-L2S' 0 .09106 » 0 ,17186 -0.10585 -0.37607 
r,- L2P' '..32103 -0 .33900 -3,72283 -0.23941 
H- IS I.52574 1 .09024 1.24609 -4.96016 
H-2S J.06723 c .23606 -0.45136 5.3442% 
H- 2P 0.03172 -0 .02993 1.05382 0.24253 

n .  C. u.99466 -0 ,08590 -0,02299 -0.00441 

n K2nl LP2«l 83itl B6nl 

P.-K2P 1.08834 -0.1)1166 -0.01993 -0.58868 
h-L2P -j.23314 0.06835 0,28312 2.71794 
R-L2P' -0.07072 -1.09094 -0.66401 -2.33063 
II-2P 0.03039 0.08211 1.12958 0.14751 

O.C. -0.01351 -0.15091 -0.03695 -0.00077 
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lAlîLL- 20. TRANSFORMAT lUN MATRIX AND GCCUPATIUN 
COEFFICIENTS OF I3H AT R = 2.70 BOHR 

s Kiofl K3CT2 K4CT3 K5CT4 K6CT5 

11-KIS 1.12003 0 .34452 -2. 99951 0 .03370 -0. 10712 
l>- K2S -0.12983 -0 .41435 3. 79575 -0 .04643 C. 14348 
B-K2P -0.00121 1 .201.77 0. 17819 -0 .00020 — 2. 47320 
l i-•K3P 0.00190 -0 .00656 -0. 06665 -0 .05535 3. 43598 
B-K3D 0.00025 0 .02056 0. 00537 0 .98894 —0. 00456 
l i-L2S -0.00020 -G .00203 1. 47460 0 .04951 —0. 02836 
H-L2P U.00717 -0 .89489 -0. 04775 0 .07969 -1. 68507 
a-L3P -0.00970 0 .19408 0. 05877 -0 .00894 c. 28367 
H-L3n -0.00198 0 .00857 0. 02166 0 .04119 G. 05605 
0= L25' 1% 00 367 Q .13248 -2. 03499 0 .01367 = 0* 08629 
l i-L2P' 0.00239 0 .29310 0. 07694 0 .01735 0.  44903 
H-IS 0.00105 -0 .23394 -0. 36265 0 .12498 -0. 32116 
H- 2S 0.00503 0 .22255 0. 18019 -0 .20472 0. 37875 
I I - 2P 0.00253 -0 .0:133 -0. 06658 -0  .08025 (;. 22775 

n .  C.  0.99970 -0 .01176 -0 .  00950 -0  .00270 -0 .  00266 

Z LPl^l LP3G2 LP4G3 LP5CT4 LP6a5 

R -KIS -(•.22175 -0 .87068 0. 16325 0 .10035 0 .04375 
R' -K2S -0.01142 0 .30982 -0. 24183 -u .09252 -0 .04953 
B' -K2P -0.00312 0 .01612 -0. 06956 -0 .12544 -1 .05865 
W  -K3P -0.01562 0 .01098 -0. 08974 0 .66997 3 .18147 
H--K31.; 0.00135 -0 .00347 -0. 02815 — 3 .31865 0 .04448 
r> -L2S 0.9R8 05 -2 .22691 —G. 32825 1 .09944 0 .28221 
M -L2P -0.03877 -0 .12732 1. 58645 -2 .19408 — 6 .79887 
li -LJP -0.09972 0 .06371 -0. 37635 2 .72018 7 .22551 
H -L31) 02665 -0 .00082 0. 07104 1 .24532 - a  .10551 
H -L2S' -u.02731 2 .56232 0. 34541 -0 .39571 -0 .06742 
U' -L2P' -0.19908 -0 .08584 -1. 14340 -0 .08508 -1 .80324 
H -15 J.07018 0 .13095 0. 58861 0 .72848 c .37844 
II -2S -0.03167 0 .1.5461 — 0. 20397 -1 .96470 -0 .65498 
H -2P 0.01184 -0 .12(66 -0. 41375 -0 .88106 -c .39229 

1) .C. 0.97352 -0 .01623 -0. 00833 -0 .00249 -0 .00086 
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T A B L E  2 0 .  ( C O N T I N U E D )  

E G191 6292 B4cr3 B5cr4 

11- KIS -'"J .03943 0 .11102 —0 .  28070 0. 06668 
IÎ- K2S .01000 -0.U1602 0. 31C59 -0 .  00401 
n-•K2P 0 .00644 ' 0 .U1657 0. 17142 0. 00954 

•K3P .00801 -0 .01393 0. 03365 -0. 01525 
fj-•K30 -0 .004G7 -0 .01321 -0. 02448 -0* 00306 

L2S 0 .00813 -Û .47352 -0. 65350 0. 45779 
i',-L2P 0 .16570 -0 .57727 -Ù. 36406 -0. 12501 
(•;-L3P .14520 0 .11631 0. 33213 0. 03879 
b-L3D 0 .06247 0 .08917 0. 24C94 0. 07677 
B-L2S' 0 .03662 -0 .03626 14514 -D. 30497 
[•i-L2P' :) .31544 —0 .50323 -0. 62824 0, C6840 
H-IS r .52829 0 .98553 0. 45764 -5. 40740 
H- 2S 3 .03139 C.0C271 0. 00443 5. 32834 
H- 2P C :  .00802 _ *i .16217 0. 93649 -0. 08970 

U. C. 0  .99171 -0 .11412 -0. 02314 -0. 00410 

n K2itl LP2nl D3nl B6al 

n-K2P 1.09293 -0.01056 -0.00945 -0.61233 
A-L2P -0.24366 0.08247 0.16493 2.84440 
n-L2P' -0.06373 -1.09086 -0.44791 -2.44954 
H-2P 0.02872 0.06393 1.07454 0.22017 

f).C. -0.01346 -0.16111 -0.03833 -0.00047 
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TABLE 21. ENERGY QUANTITIES OF LIH AS FUNCTIONS OF R 

R -E -E{PNO) e(K) — eCB) I(K,8) 

2. 600 8. 04374 7 .97614 6. 53413 1. 17042 1. 49304 
2. 800 8. 05155 7 .98277 6. 55896 1. 14441 1. 41961 
3 .  oeo 3.C5415 7 .98470 6. 58180 1. 11945 1. 3529C 
3. 015 8. 05418 7 .98469 6. 58342 I. 11763 1. 34816 
3. 050  8. 05421 7 .98467 6. 58656 1. 11349 1. 33776 
3. 100 8. 05411 7 .98449 6. 59097 1. 10765 1. 32323 
3. 200 8. 05342 7 .98368 6. 59945 1. 09622 1. 29525 

. 3. 400 8. 05059 7 .98064 6. 61519 1. G7439 1. 24336 
3. 600 8. 04642 7 .97631 6. 62937 1. G5398 1. 19641 
4. 000 8. 03570 7 .96533 6. 65350 1. 01711 1. 115G9 
5. 000 8. 00518 7 .92706 6. 68182 0. 93971 0. 98371 
7. 000 7. 97037 7 .85833 6. 67639 0. 84722 û. 87533 

00 7. 96943 7 .93194 6. 64906 0. 19591 0. 62446 

i 
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TABLE 22. ENERGY QUANTITIES OF BH AS FUNCTIO.MS OF R 

R -E -E(PNO) - e(K) -€{B) -e(LP> I ( K , 3 )  I  (K *LP) I ( 8 , L P )  

1. 800 25 .1259 25. 0514 IB .  1744 1.3982 1.9294 2.4649 2. 4539 1.4829 
2. 000 25 .1823 25. 1C35 18 .2079 1.4143 1.8153 2.3223 4722 1.4503 
2. 20 J 25 .2034 25. 1213 18 .2343 1.4317 1.7C7T 2.1333 2. 4958 1.4173 
2. 300 25 .2054 25. 1224 18 .2468 1.4413 1.6567 2.1247 2. 5094 1.4005 
2. 329 25 .2053 25. 1223 18 .2499 1.4442 1.6422 2.1:64 2. 5138 1.3956 
2. 350 25 .2053 25. 1221 18 .2512 1.4452 1.6335 2.0961 2. 5152 1.3918 
2. 400 25 .2050 25. 1214 18 .2536 1.4476 1.6131 2.0719 2. 5192 1,3828 
2. 600 25 .1974 25. 1127 18 .2630 1.4576 1.5350 1.9798 2. 5372 1.347n 
3. 500 25 . 1 6 1  25. 0177 18 .2772 1.4455 1.2796 1.7533 2. 5481 1.23:3 
4. 500 25 .0236 24. 9283 18 .2888 1.4441 1.0934 1.5964 2. 5692 1.1427 

09 25 .0622 25. 0200 17 .9034 1.9136 0.3C78 1.1765 2. 4747 0.7863 
to 
N> 

V I  
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r^BLE 23. OCCUPATION NUMBERS OF LIH AS FUNCTIONS OF R 

R Klal K2cri K3«2 K4<73 131^1 32^2 SBJCL .-s4cr3 

2. 6c:  0. 99778 0 .00113 0. 00056 0. 00046 0 .  97466 01164 0 .  01032 0-00238 
2. aco 0 .  99772 0 .00114 0.  00058 0. 00046 0. 97284 0 .  01334 0.  01033 0.003 39 
3. 000 0. 99766 0 .00116 0. 00061 0. 00047 G .  97123 3 .  01505 0. 01011 0.00323 
3. 200 G. 99770 0 .00112 0. 00061 0. 0C047 C. 96954 0. 01690 0 .  00988 C.00328 
3. SCO 0 .  99778 0 .0-0104 0 e C0061 0. 00047 0. 96656 c. 02027 0. C0954 0.00321 
4. 000 V ,  99792 0 .00092 0.  CGC 5 9 0. 00048 Û. 95995 3. 02777 0.  00893 0.00292 
5. 000 0. 99792 0 .00092 0.  00058 0. 00043 0 .  93244 C. 05914 V « CC623 0.00123 
7. 000 0 .  99794 0 .00092 0. 00058 0. 00048 0 .  79075 0 .  20672 0. 00203 0-00034 

00 G • 99742 0 .00117 0. 00070 C m  00059 c. 50000 0 .  50C00 0 .  c O.-j 
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TABLE 24. OCCUPATION NUMBERS OF BH AS FUNCTIONS OF R 

R Klcrl K2iti LPl^l LPZitI BIol f)2a2 

2. 000 V.99942 0 .00035 0. 95064 0.04912 C.99253 00410 C. 00279 
2. 200 0.99940 0 .00037 0. 94918 0.05050 0.98935 G. 00 73 8 C G 27 3 
2. 300 5.99938 0 .00137 0. 94858 0.05107 0.98790 0. 00891 G. C273 
2. 400 0-99938 0 .00037 0. 94834 0.05128 0.98653 0. C1C26 C. 0 v275 
2. 600 0.99940 0 .00037 0. 94799 0.05166 0.98424 0. 01237 i. # c 0286 
3. 000 0.99940 0 .00C36 0 * 94630 0.05335 0.98131 «J # 01544 0. 0 0271 
3. 500 •J. 99940 0 .00036 0. 94363 0.05600 0.97838 0- 01910 c. 5 0237 
4. 500 0.99943 0 .00036 0. 93962 0.06001 0.96865 c. 02931 0 3177 

00 ..99918 0 .00036 0. 99990 O.OOOC5 0.50Û00 0. 50000 V * 2 
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TABLE 25. DUNHAM® POLYNOMIAL APPROXIMATION FHR THE 
POTENTIAL CURVE OF LIH 

DEGREE E(RI ) £(R2) 
OF 

POINTS 

MIN 
R 

®0 ^2 

5 -e .05261(2.85) -8.05221(3. 30) 10 3.042 3.3277 -2.2341 13.797 

5 -8 .05017(2.75) -3.04965(3. 45) 15 3.043 0.3403 -2.414 5.1934 

5 -8 .04631(2.65) -3.04642(3. 60) 20 3.042 1.3441 -2.379P 3.6396 

5 —8 .02765(2.40) -8.02832(4. 25) 16 3.042 0.3426 -2.4069 4.3316 

6 -8 .0276512.40) -8.02832(4. 25) 16 3.045 0.3393 -2.2169 4.21^1 

7 —8 .02765(2.40) -8.02832(4. 25) 16 3.G45 0.3367 -2.254 4.7C9 

EXP"* 3.015 0.2995 -1.684 2.378 

®REF. (67) 
^CRAWFORD AND JORGENSEN REF. C27I 
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lABLIr 26- SPECTROSCOPIC CONSTANTS CALCULATED 
FROM APSG POTIÏNTIAL CURVES 

LIH 

CONSTANT CALCULATED EXPERIMENT' PERCENT 
OEVIAnON 

'•'e 
'"e 
ye 

e 

l/CM 
1/C4 
1/CM 
• A 

7.381 
1483 
24.45 
.•>.2849 
1 . 6 1 1  

7.513 
14v5.6 
23.2': 
0.213 
1.595 

•1.75 
5 . 5  
5.4 
33.7 

9Ô 

l)H 

CONST A.>iT CALCULA rr-D EXPBRIMtNT^ PHRCti-IT 
DEVIATION 

Be 1/CM 12.085 12.016 0.57 

^E" 1/CM 2 9  2  H  2367.5 23-7 
1/CM 45.40 (49) 

«E l /CM >.4087 0.408 19. 77 < \ l .n3 ; 1.236 -C.49 

^CRAWFORD AND JORGE-^SEN REF. (27) 
"RAUfiR, FT AL. R!.iF. (29) 
'^ESTIMAI Fl] FROM U)gXe/u)e = °*^ SEE P.CF. (29) 
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TABLE 27. COMPUTATION TIME FOR ALL EXCHANGE INTEGRALS ARISING FROM A GIVEN 
BASES SET®'° 

BASIS NO. OF TOTAL TOTAL 
SET AO'S PER NO. OF TIME IN 

CENTER INTEGRALS MINUTES 

Is 1 1 0.05 

+2s 2 10 0.05 

+2 per 3 45 0.08 

+2pjt k  136 0.10 

+2pjî 5 325 0,10 

+3s 6 666 0.14 

+3 Pa 7 1225 0.21 

+3pjr 8 2080 0.32 

+3pjt 9 3321 0.32 

+3 da 10 5050 0.42 

+3 dît 11 7381 0.56 

+3dS 12 10440 0.63 

+3d6 13 . 14365 0.76 

+3d6 14 19300 0.89 

^ C|j for all orbitals, but ÇS = Qjt, Çô = (6 

^Times quoted apply to an IBM 36O/65 
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I 1 = 1 BOHR 

DIRGRFIM I. CONTOUR MRP OF B 1 SIGMA I 
NO OF LIH AT R=3.00 BOHR 
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i 

M 2. CONTOUR MRP OF B 2 
LIH RT R=3.00 30HR 
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DIAGRAM 3. CONTOUR MAP OF B 1 SIGMA I 
NC OF LIH RT R=7.00 BOHR 
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1 3 1  

1 BOHR 

DIRGRRM 1. CONTOUR MRP 0F B 2 SIGMA 2 
OF LIH AT R=7.00 BOHR 
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1 1 = 1 SOHR 

DIRGRRM 5. CONTOUR MAP OF B I SIGMR I + 
B 2 SIGMA 2 NO'S OF LIH AT R=7.00 BOHR 
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i 1 = 1 BOHR 

D:RGHRM 5. CONTOUR MAP OF B I SIGMA I -
B 2 SIGMA 2 NO'S OF LIH RT R=7.00 BOHR 
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—rû_ 
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LU 
-y BH 

2.50 3.50 1.50 3.00 2.00 
-R IM BQHR 

GRAPH 2. POTENTIAL CURVE OF THE SEPARATED 
PAIR ENERGY OF BH 
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TKECnuTICnL 
EXrEr:Ir.c.:7hL 
DIFFtircKCc 

GHAPH 7. EXPERIMENTAL AND THEORETICAL 
DUNHAM POTENTIAL CURVES FOR LIH 
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APPENDIX B 
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Contour maps for all the natural orbltals which form the bases of the 

APS G wave functions determined for Li, LIH, B, and BH are presented. The 

LÎH and BH contour maps are chosen at the equiIIbrlum distance of 3-015 and 

2.329 bohr respectively. The contour maps are drawn to the same scale In 

units of R 

Contours which are positive are drawn with solid lines, and contours 

which are negative are drawn with dashed lines. The nodes are drawn with 

_9/2 
dotted lines. Contours, C, ure drawn In increments of 0,04 bohr - In the 

Interval® 

-0.4 < C < 0.4 

Thus in a region enclosed by a node the contour nearest it has a value of 

|0.04l bohr The nuclei are located at the Intersections of the straight 

lines which would connect the vertical tick marks and the horizontal tick 

marks. 

^The contour maps of Diagrams 1-6 are drawn in Increments of 0.02 bohr 
i n  a n  i n t e r v a l  - 0 . 2  <  C  < 0 . 2 .  
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I 1 = 1 BOHR 

natural orbital contour map i. 
lih k shell i sigma 1 c0c= .998823 
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I 1 = I BOHR 

natural orbital contour map 2. 
lih k shell 2 sigma 2 [0c=-.02u63) 
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i = I BOHR 

natural orbital contour map 3. 
lih k shell 3 pi i (0c=-.021121) 
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I 1 = I BOHR 

xrturrl orbital contour mrp u. 
lih k shell u sigma 3 coc=-.02158) 
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natural orbital contour mrp 5. 
L:h K shell 5 pi 2 foc=-.003881 
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natural orbital contour mrp 6. 
lih k shell s pi 3 (0c=-.00385! 
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s 

{ = 1 BOHR 

NATURAL orbital contour mrp 7. 
LIH K shell 7 delta 1 coc=-.0038^1) 
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natural orbital contour map 8. 
lih k shell 8 sigma 4= coc=-.00383] 
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•- ::-y/ 
%" . %% 
:Zz:3. ' 

* m m m m 

= 1 80HR 

nrtl'rrl orbital contour mrp 9. 
lih k shell 3 sigma 5 c0c=-.00142) 
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1 1 = 1 BOHR 

nrturrl orbital contour map 10. 
lih bonding i sigma 1 c0c= ,985148) 
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\ = I BOHR 

natural orbital contour mrp ii. 
lih bonding 2 sigma 2 [0c=-.12321] 
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1 BOHR 

natural orbital contour map 12. 
lih bonding 3 pi i (0c=-.070801 



www.manaraa.com

156 

V. 

I 1 = 1 BOHR 

natural orbital contour map 13. 
lih bonding u sigma 3 [0c=-.05696) 
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nrturrl^orbitrl contour mrp 14. 
lih bonding 5 sigmr li cflc=-.01232) 
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s,. 

.. • 

\ = l BOHR 

natural orbital contour map 15. 
lih bonding 6 pi 2 [0c=-.009u5i 
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I 1 = 1 BOHR 

natural orbital contour map 15. 
lih bonding 7 pi 3 (0c=-.004:931 
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j = 1 BOHR 

nqturrl orbital contour mrp 18. 
l:h Binding 9 sigma b [cc=-.oco9'4) 
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I 1 = 1 BOHR 

natural orbital contour map 19. 
li k shell 1 s i (0c= .99871) 
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\ = 1 BOHR 

NATURAL orbital contour mrp 20. 
LI K SHELL 2 S 2 (0c=-.026501 
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1 1 = I BOHR 

natural orbital contour map 21. 
li k shell 3 p 1 (oc=-.02u20) 
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-•«y 

= 1 BOHR 

NATURAL ORBITAL CONTOUR MAP 22. 
Lî K SHELL li P 2 (0C=-.00105) 



www.manaraa.com

166 

m 

I 1 = 1 BOHR 

;\'flturhl orbital contour map 23. 
li k shell 5 d i (0c=-.00381) 
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LI 

I 1 = I B0HR 

nrturrl orbital contour map 21. 
li l shell 1 s i (0c= 1.00000) 
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natural orbital contour mrp 25. 
5h k shell 1 segmr l (0c= .99969) 
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xatural orbital contour mrp 26. 
:h kshell 2 pi i (dc=-.013s4) 
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I 1 = I BOHR 

natural orbital contour mrp 27. 
bh k shell 3 sigma 2 (0c=-.011811 
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/'/'• 

\ \ 

1# 
s. ^ X 

! # j -

1 1 = I BOHR 

NATURAL ORBITAL CONTOUR MAP 28. 
BH K SHELL 14 SIGMA 3 (0C=-. 00970) 
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NATURAL ORBITAL CONTOUR MRP 29. 
3H K SHELL 5 SIGMA 4 (0C=-.002711 
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// 

! 
I 

. 

. 1 . 

] = 1 BOHR 

NATURAL ORBITAL CONTOUR MAP 30. 
K SHELL S SIGMA 5 (0C=-.0026m 



www.manaraa.com

174 

NATURAL ORBITAL CONTOUR MAP 31. 
bh LONE PAIR 1 SIGMA i (0C= .97387) 
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*.v 

1 1 = 1 BOHR 

NATURAL ORBITAL CONTOUR MRP 32. 
3H LONE PAIR 2 PI 1 COC=-.160041 



www.manaraa.com

NflTURRL ORBITAL CONTOUR MRP 33, 
3H LONE PAIR 3 SIGMR 2 (0C=-.01600! 
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W/i ïvtS'.v 

\ = I BOHR 

r-RTURRL 
LONE 

ORBITAL CONTOUR MRP 3'4. 
PAIR ll SIGMA 3 (0C=-.CiC18) 

3^. 
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natural 
bh lone 

ORBITAL CONTOUR MAP 35. 
PAIR 5 SIGMA 1 (0C=.-.002351 
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1 I J: 

3# 
# 

= 1 SOHR 

^qTURaL ORBITAL CONTOUR MAP 
g'-: LCNE PAIR S SIGMA 5 (0C=-

C-D. 

on 
% s.^ L.. 
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I. 

/ 
/ 

•N 
\ 
\ 

\ 

! / 

-HH 

= 1 BCHR 

nrturrl orbital contour mrp 37 
J pr^Nir 

U. I OKOrNG 1 SIGMA I (0C= .99377) 
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I 1 = 1 BOHR 

NATURAL ORBITAL CONTOUR MRP 38. 
•;•! G3N0ING 2 SIGMA 2 (0C=-.0S615! 
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NATURAL ORBITAL 
:i 83KDING 3 PI 

contour map 39. 
1 1:00=-. 03691] 
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) 
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I 

i 
) 

I 1 = 1 BOHR 

NRTURHL ORBITAL CONTOUR MAP 40. 
I'l BCNOING 4 SIGMA 3 (0C=-.020561 
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I 1 = I BOHR 

NATURAL ORBITAL CONTOUR MRP 11. 
BH BONDING 5 SIGMA '4 (0C=-. 00192) 
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## 

{ = I BOHR 

NRTURflL ORBITAL CONTOUR MRP "2. 
3H BONDING 6 PI 2 [0C=-.000673 
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ê 

4 = I BOHR 

NRTURRL ORBITAL CONTOUR MAP 43. 
3 K SHELL I 3 1 (CC= .99959) 
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= I BOHR 

XnTUHAL ORBITAL CONTOUR MAP m. 
{ shell 2 s 2 (gc=-.01680) 
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s 

= I BOHR 

NATURAL ORBITAL CONTOUR MAP US. 
5 K SHELL 3 P I (CC=-.013iim 
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3 

= I BOHR 

KRTURRL ORBITAL CONTOUR MRP 
: LOKL PRIR 1 S 1 [0C= .99995) 
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NATURAL ORBITAL CONTOUR MAP 17. 
3 LCNE PAIR 2 S 2 CQC=-,00'499Î 
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NATURAL ORBITAL CONTOUR MRP 48 
8 LGN'E PAIR 3 P 1 (0c=-.00497:i 
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NATURAL ORBITAL CONTOUR MAP 19. 
5 LQN'E ELECTRON! 1 P 1 COC= .57335} 
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